Skip to main content

Visuomotor Areas of the Frontal Lobe

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

That frontal cortex is involved in visually guided behavior has been known for over a century. Since the pioneering work of Ferrier, several areas in frontal cortex have been identified as having visual responses and playing some role in producing movements of the eyes, head, and limbs. Comprehensive reviews of frontal lobe organization and function have appeared (Fuster, 1989; Goldman-Rakic, 1987, 1988; Passingham, 1993; Levin et al., 1991; Perecman, 1987; Stuss and Benson, 1986; Petrides and Pandya, 1994). This chapter will survey recent findings regarding the possible roles of the different areas of frontal cortex in the production of visually guided movements. Areas of disagreement in the literature will be examined. Although some neurons in primary motor cortex are visually responsive (e.g., Kwan et al., 1985), such signals seem to be fairly nonspecific activations. Most emphasis will be on eye movements and the function of the frontal and supplementary eye fields. Recent experiments will also be reviewed that examine the function of the agranular premotor cortex and the granular dorsolateral and ventrolateral prefrontal cortex. The state of knowledge and the author’s competence wane toward the rostral pole. Nevertheless, the orbitofrontal and cingulate cortex are integral if poorly understood parts of frontal cortex that relate to affect and personality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G. E., and Crutcher, M. D., 1990, Preparation for movement: Neural representations of intended direction in three motor areas of the monkey, J. Neurophysiol. 64: 133–150.

    CAS  PubMed  Google Scholar 

  • Amaral, D. G., and Price, 1. L., 1984, Amygdalo-cortical projections in the monkey (Maraca fiiscicularis), J. COMP. Neurol. 230: 465–496.

    Article  CAS  Google Scholar 

  • Andersen, R. A., Asanuma, C., and Cowan, W. M., 1985, Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: A study using retrogradely transported fluorescent dyes, J. Comp. Neurol. 232: 443–455.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., and Fugassi, L., 1990, Eye position effects on visual memory, and saccade-related activity in areas LIP and 7a of macaque, J. Neurosci. 10: 1176–1196.

    CAS  PubMed  Google Scholar 

  • Anderson, T. J., Jenkins, I. H., Brooks, D. J., Hawken, M. B., Rackowiak, R. S. J., and Kennard, C., 1994, Cortical control of saccades and fixation in man. A PET study, Brain 117: 1073–1084.

    Article  PubMed  Google Scholar 

  • Andreasen, N., Nasrallah, H. A., Dunn, V., Olson, S. C., Grove, W. M., Ehrhardt, J. C., Coffman, J. A., and Crossett, J. H., 1986, Structural abnormalities in the frontal system in schizophrenia. A magnetic resonance imaging study, Arch. Gen. Psychiatry 43: 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Antes, J. R., 1974, The time course of picture viewing, J. Exp. Psychol. 103: 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Apicella, P., Ljungberg, T., Scarnati, E., and Schultz, W., 1991, Responses to reward in monkey dorsal and ventral striatum, Exp. Brain Res. 85: 491–500.

    Article  CAS  PubMed  Google Scholar 

  • Arikuni, T., and Kubota, K., 1986, The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: A retrograde study using HRP-gel, J. Comp. Neurol. 244: 492–510.

    Article  CAS  PubMed  Google Scholar 

  • Arnsten, A. F. T., Cai, J. X., Murphy, B. L., and Goldman-Rakic, P. S., 1994, Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys, Psychopharmacology 116: 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Asanuma, C., Thach, W. T., and Jones, E. G., 1983, Distribution of cerebellar terminations and their relation to other afferent terminations in the thalamic ventral lateral region of the monkey, Brain Res. Rev. 5: 237–265.

    Article  Google Scholar 

  • Azuma, M., and Suzuki, H., 1984, Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey, Brain Res. 298: 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Bachevalier, J., and Mishkin, M., 1986, Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys, Behay. Brain Res. 20: 249–261.

    Article  CAS  Google Scholar 

  • Baedeker, C., and Wolf, W., 1987, Influence of saccades on manual reactions—A reaction time and VEP study, Vision Res. 27: 609–619.

    Article  CAS  PubMed  Google Scholar 

  • Baizer, J. S., Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.

    Google Scholar 

  • Baleydier, C., and Maguire, F., 1980, The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis, Brain 103: 525–554.

    Article  CAS  PubMed  Google Scholar 

  • Barbas, H., 1988, Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey, J. Comp. Neural. 276: 313–342.

    Article  CAS  Google Scholar 

  • Barbas, H., 1993, Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey, Neuroscience 56: 841–864.

    Article  CAS  PubMed  Google Scholar 

  • Barbas, H., and Mesulam, M.-M., 1981, Organization of afferent input to subdivisions of area 8 in the rhesus monkey, J. Comp. Neurol. 200: 407–431.

    Article  CAS  PubMed  Google Scholar 

  • Barbas, H., and Pandya, D. N., 1987, Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey, J. Comp. Neurol. 256: 211–228.

    Article  CAS  PubMed  Google Scholar 

  • Barone, P., and,Joseph, J.-P., 1989, Prefrontal cortex and spatial sequencing in macaque monkey, Exp. Brain Res. 78: 447–464.

    Article  CAS  PubMed  Google Scholar 

  • Bates, J. F., and Goldman-Rakic, P. S., 1993, Prefrontal connections of medial motor areas in the rhesus monkey, J. Comp. Neurol. 336: 211–228.

    Article  CAS  PubMed  Google Scholar 

  • Batuev, A. S., Shaefer, V. I., and Orlov, A. A., 1985, Comparative characteristics of unit activity in the prefrontal and parietal areas during delayed performance in monkeys, Behay. Brain Res. 16: 57–70.

    Article  CAS  Google Scholar 

  • Bauer, R. H., and Fuster, J., 1976, Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys, J. Comp. Physiol. Pchol. 90: 293–302.

    CAS  Google Scholar 

  • Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.

    CAS  PubMed  Google Scholar 

  • Becker, W., and Jürgens, R., 1979, An analysis of the saccadic system by means of double step stimuli, Vision Res. 19: 976–983.

    Article  Google Scholar 

  • Beevor, C. E., and Horsley, V., 1888, A further minute analysis by electric stimulation of the so-called motor region of the cortex cerebri in the monkey (Macacus sinicus), Phil. Trans. R. Soc. Lond. 179: 205–256.

    Article  Google Scholar 

  • Beevor, C. E., and Horsley, V., 1890, A record of the results obtained by electrical excitation of the socalled motor cortex and internal capsule in an orang-outang, Phil. Trans. R. Soc. Loud. 181: 129–158.

    Article  Google Scholar 

  • Bekkering, H., Adam, J. J., Kingma, H., Huson, A., and Whiting, H. T. A., 1994, Reaction time latencies of eye and hand movements in single-and dual-task conditions, Exp. Brain Res. 97: 471–476.

    Article  CAS  PubMed  Google Scholar 

  • Benecke, R., Dick, J. P. R., Rothwell, J. C., Day, B. L., and Marsden, C. I)., 1985, Increase of the Bereitschaftspotential in simultaneous and sequential movements, Neurosci. Lett. 62: 347–352.

    CAS  Google Scholar 

  • Benevento, L. A., Fallon, J. H., Davis, B. J., and Rezak, M., 1977, Auditory-visual interaction in single cells of the superior temporal sulcus and orbito-frontal cortex of the macaque monkey, Exp. Neurol. 57: 849–872.

    Article  CAS  PubMed  Google Scholar 

  • Berman, R. A., Luna, B., McCurtain, B. J., Strojwas, M. H., Voyvodic, J. T., Thulhorn, K. R., and Sweeney, J. A., 1996, FMRI studies of human frontal eye fields, Soc. Neurosci. Abstr. 22: 1687.

    Google Scholar 

  • Bichot, N. P., Schall, J. D., and Thompson, K. G., 1996, Visual feature selectivity in frontal eye fields induced by experience in mature macaques, Nature 381: 697–699.

    Article  CAS  PubMed  Google Scholar 

  • Bizzi, E., 1968, Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys, Exp. Brain Res. 6: 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Bizzi, E., and Schiller, P. H., 1970, Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement, Exp. Brain Res. 10: 151–158.

    Article  Google Scholar 

  • Blum, B., Kulikowski, J. J., Carden, D., and Harwood, D., 1982, Eye movements induced by electrical stimulation of the frontal eye fields of marmosets and squirrel monkeys, Brain Behay. Evol. 21: 34–41.

    Article  CAS  Google Scholar 

  • Boch, R., and Goldberg, M. E., 1989, Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey, J. Neurophysiol. 61: 1064–1084.

    CAS  PubMed  Google Scholar 

  • Bock, O., 1987, Coordination of arm and eye movements in tracking of sinusoidally moving targets, Behay. Brain Res. 24: 93–100.

    Article  CAS  Google Scholar 

  • Bolles, R. C., 1975, Theory of Motivation, Harper Row, New York.

    Google Scholar 

  • Bon, L., and Lucchetti, C., 1991, Behavioral and motor mechanisms of dorsomedial frontal cortex of macaca monkey, Lnt. J. Neurosci. 60: 187–193.

    CAS  Google Scholar 

  • Bon, L., and Lucchetti, C., 1992, The dorsomedial frontal cortex of the macaca monkey: Fixation and saccade-related activity, Exp. Brain Res. 89: 571–580.

    Article  CAS  PubMed  Google Scholar 

  • Bon, L., and Lucchetti, C., 1994, Ear and eye representation in the frontal cortex, area 8h, of the macaque monkey: An electrophysiological study, Exp. Brain Res. 102: 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Botzel, K., Plendl, H., Paulus, W., and Scherg, M., 1993, Bereitschaftspotential: Is there a contribution of the supplementary motor area: Electroenceph. Clin. Neurophysiol. 89: 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Boussaoud, D., and Wise, S. P., 1993a, Primate frontal cortex: Neuronal activity following attentional versus intentional cues, Exp. Brain Res. 95: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Boussaoud, D., and Wise, S. P., 1993b, Primate frontal cortex: Effects of stimulus movement, Exp. Brain Res. 95: 28–40.

    CAS  PubMed  Google Scholar 

  • Boussaoud, D., 1995, Primate premotor cortex: Modulation of preparatory neuronal activity by gaze angle, J. Neurophysiol. 73: 886–890.

    CAS  PubMed  Google Scholar 

  • Boussaoud, I)., Barth, T. M., and Wise, S. P., 1993, Effects of gaze on apparent visual responses of frontal cortex neurons, Exp. Brain Res. 93: 423–434.

    Google Scholar 

  • Bradley, A., Skottun, B. C., Ohzawa, 1., Sclar, G., and Freeman, R., 1987, Visual orientation and spatial frequency discrimination: A comparison of single neurons and behavior,/ Neurophysiol. 57: 755–772.

    CAS  Google Scholar 

  • Bridgeman, B., van der Heijden, A. H. C., and Velichkovsky, B. M., 1994, A theory of visual stability across saccadic eye movements, Behay. Brain Sci. 17: 247–292.

    Article  Google Scholar 

  • Brinkman, C., 1984, Supplementary motor area of the monkey’s cerebral cortex: Short-and longterm deficits after unilateral ablation and the effects of subsequent callosal section,/ Neurosci. 4: 918–929.

    CAS  Google Scholar 

  • Brinkman, C., and Porter, R., 1979, Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task,/ Neurophysiol. 42: 681–709.

    CAS  Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1992, The analysis of visual motion: A comparison of neuronal and psychophysical performance, J. Neurosci.. 12: 4745–4765.

    CAS  PubMed  Google Scholar 

  • Bruce, C. J., 1990, Integration of sensory and motor signals for saccadic eye movements in the primate frontal eye fields, in: Signals and Sense, Local and Global Order in Perceptual Maps ( G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley, New York, pp. 261–314.

    Google Scholar 

  • Bruce, C.,J., and Goldberg, M. E., 1985, Primate frontal eye fields. I. Single neurons discharging before saccades, J. Neurophysiol. 53: 603–635.

    Google Scholar 

  • Bruce, C. J., Goldberg, M. E., Bushnell, C., and Stanton, G. B., 1985, Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements, J. Neurophysiol. 54: 714–734.

    CAS  PubMed  Google Scholar 

  • Buchsbaum, M. S., and Haier, R. J., 1987, Functional and anatomical brain imaging: Impact on schizophrenia research, Schizophrenia Bull. 13: 115 — I32.

    Article  CAS  Google Scholar 

  • Burman, D. D., and Segraves, M. A., 1994, Primate frontal eye field activity during natural scanning eye movements, j. Neurophysiol. 71: 1266–1271.

    CAS  Google Scholar 

  • Butter, C. M., 1969, Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta, Physiol. Behay. 4: 163–171.

    Article  Google Scholar 

  • Caminiti, R., Johnson, P. B., and Urbano, A., 1991, Making arm movements within different parts of space: The premotor and motor cortical representation of a coordinate system for reaching to visual targets, J. Neurosci. 11:1182–1197.

    Google Scholar 

  • Carpenter, R. H. S., and Williams, M. L. L., 1995, Neural computation of log likelihood in control of saccadic eye movements, Nature 377: 59–62.

    Article  CAS  PubMed  Google Scholar 

  • Cavada, C., and Goldman-Rakic, P. S., 1989, Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe,/ Comp. Neurol. 287: 422–445.

    Article  CAS  Google Scholar 

  • Chedru, F., Leblanc, M., and Lhermitte, F., 1973, Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention), Cortex 9: 94–111.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D. F., Hyland, B., Maier, V., Palmeri, A., and Wiesendanger, M., 1991, Comparison of neural activity in the supplementary motor area and in the primary motor cortex in monkeys, Somatosensory Motor Res. 8: 27–44.

    Article  CAS  Google Scholar 

  • Chen, L. L., and Wise, S. P., 1995a, Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations, J. Neurophysiol. 73: 1101–1121.

    Google Scholar 

  • Chen, L. L., and Wise, S. P., 1995b, Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations, J. Neurophysiol. 73: 1122–1134.

    Google Scholar 

  • Chen, Y.-C.,’I’haler, D., Nixon, P. D., Stern, C. E., and Passingham, R. E., 1995, The functions of the medial premotor cortex. II. The timing and selection of learned movements, Exp. Brain Res. 102: 461–473.

    Google Scholar 

  • Cohn, T. E., Green, D. G., and Tanner, W. P., 1975, Receiver operating characteristic analysis: Application to the study of quantum fluctuation effects in optic nerve of Rana pipiens, J. Gen. Physiol. 66: 583–616.

    Article  CAS  Google Scholar 

  • Colby, C. L., and Duhanmel, J.-R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey, Neuropsychologza 29: 517–537.

    Article  CAS  Google Scholar 

  • Colebatch, J. G., Deiber, M. P., Passingham, R. E., Friston, K. J., and Frackowiak, R. S. J., 1991, Regional cerebral blood flow during voluntary arm and hand movements in human subjects,/ Neurophysiol. 65: 1392–1401.

    CAS  Google Scholar 

  • Collin, N. G., Cowey, A., Latto, R., and Marzi, C., 1982, The role of frontal eye-fields and superior colliculi in visual search and non-visual search in rhesus monkeys, Behay. Brain Res. 4: 177–193.

    Article  CAS  Google Scholar 

  • Colombo, M., and Gross, C. G., 1994, Responses of inferior temporal cortex and hippocampal neurons during delayed matching to sample in monkeys (Macaca fascicularis), Behay. Neurosci. 108: 443–455.

    Article  CAS  Google Scholar 

  • Colombo, M., Eickhoff, A. E., and Gross, C. G., 1993, The effects of inferior temporal and dorsolateral frontal lesions on serial-order behavior and visual imagery in monkeys, Cognitive Brain Res. 1: 211–217.

    Article  CAS  Google Scholar 

  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., and Petersen, S. E., 1991, Selective and divided attention during visual discriminations of shape, color and speed: Functional anatomy by positron emission tomography, j. Neurosci. 11: 2383–2402.

    CAS  Google Scholar 

  • Crammond, D. J., and Kalaska, J. F., 1994, Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus—response compatibility, J. Neurophysiol. 71: 1281–1284.

    CAS  PubMed  Google Scholar 

  • Crick, F., and Koch, C., 1995, Are we aware of neural activity in primary visual cortex? Nature 375: 121–123.

    Article  CAS  PubMed  Google Scholar 

  • Crosby, E. C., Voss, R. E., and Henderson, J. W., 1952, The mammalian midbrain and isthmus regions. Part 11. The fiber connections. D. The pattern for eye movements in the frontal eye field and the discharge of specific portions of this field to and through midbrain levels, J. Comp. Neurol. 97: 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Crowne, D. P., Dawson, K. A., and Richardson, C. M., 1989, Unilateral periarcuate and posterior parietal lesions impair conditional position discrimination learning in the monkey, Neuropsychologia 27: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Darby, D. G., Nobre, A. C., Thangaraj, V., Edelman, R., Mesulam, M. M., and Warach, S., 1996, Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging, Neuroimage 3: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Dassonville, P., Schlag, J., and Schlag-Rey, M., 1992a, Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates, Visual Neurosci. 9: 261–269.

    Article  CAS  Google Scholar 

  • Dassonville, P., Schlag, J., and Schlag-Rey, M., 19926, The frontal eye field provides the goal of saccadic eye movement, Exp. Brain Res. 89: 300–310.

    Google Scholar 

  • Dassonville, P., Schlag, J., and Schlag-Rey, M., 1995, The use of egocentric and exocentric location cues in saccadic programming, Vision Res. 35: 2191–2199.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, T. W., 1992, Cortical connections of the inferior arcuate sulcus cortex in the macaque brain, Brain Res. 573: 8–26.

    Article  CAS  PubMed  Google Scholar 

  • Deecke, L., and Kornhuber, H. H., 1978, An electrical sign of participation of the mesial “supple- mentary” motor cortex in human voluntary finger movements, Brain Res. 159: 473–476.

    Article  CAS  PubMed  Google Scholar 

  • Deecke, L., Scheid, P., and Kornhuber, H. H., 1969, Distribution of readiness potential, pre-motion positivity and motor potential of the human cerebral cortex preceding voluntary finger movements, Exp. Brain Res. 7: 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Deecke, L., Kornhuber, H. H., Lang, W., Lang, M., and Schreiber, H., 1985, Timing function of the frontal cortex in sequential motor and learning tasks, Human Neurobiol. 4: 143–154.

    CAS  Google Scholar 

  • Démonet, J. F., Chollet, F., Ramsey, S., Cardebat, D., Nespoulous, J. L., Wise, R., Rascol, A., and Frackowiak, R., 1992, “Me anatomy of phonological and semantic processing in normal subjects, Brain 115: 1753–1768.

    Google Scholar 

  • Deng, S.-Y., Goldberg, M. E., Segraves, M. A., Ungerleider, L. G., and Mishkin, M., 1986, ‘Fhe effect of unilateral ablation of the frontal eye fields on saccadic performance in the monkey, in Adaptive Processes in Visual and Oculomotor Systems, (E. L. Keller and D. S. Zee, eds.), Pergamon Press, Oxfrd, pp. 201–208.

    Google Scholar 

  • Desimone, R., and Duncan, J., 1995, Neural mechanisms of selective visual attention, Ann. Rev. Neurosci. 18: 193–222.

    Article  CAS  PubMed  Google Scholar 

  • Dias, E. C., and Bruce, C. J., 1994, Physiological correlate of fixation disengagement in the primate’s frontal eye field, J. Neurophysiol. 72: 2532–2537.

    CAS  PubMed  Google Scholar 

  • Dick, J. P. R., Benecke, R., Rothwell, J. C., Day, B. L., and Marsden, C. D., 1986, Simple and complex movements in a patient with infarction of the right supplementary motor area, Movement Disord. 1: 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Di Pelligrino, G., and Wise, S. P., 1993a, Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate, J. Neurosci. 13: 1227–1243.

    Google Scholar 

  • Di Pelligrino, G., and Wise, S. P., 19936, Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate, Somotosensory Motor Res. 10: 245–262.

    Google Scholar 

  • Di Pelligrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G., 1992, Understanding motor events: A neurophysiological study, Exp. Brain Res. 91: 176–180.

    Google Scholar 

  • Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkeys, J. Cornp. Neurol. 334: 125–150.

    Article  CAS  Google Scholar 

  • Dorris, M. C., and Munoz, D. P., 1995, A neural correlate for the gap effect on saccadic reaction times in monkey, J. Neurophysiol. 73: 2558–2562.

    CAS  PubMed  Google Scholar 

  • Duhamel, J.-R., Colby, C. L., and Goldberg, M. E., 1992, The updating of the representation of visual space in parietal cortex by intended eye movements, Science 255: 90–92.

    CAS  Google Scholar 

  • Dum, R. P., and Strick, P. L., 1991, The origin of corticospinal projections from the premotor areas in the frontal lobe, J. Neurosci. 11: 667–689.

    CAS  PubMed  Google Scholar 

  • Eccles, J. C., 1982, The initiation of voluntary movements by the supplementary motor area, Arch. Psych. Nervenkr. 231: 423–441.

    Article  CAS  Google Scholar 

  • Erickson, R. G., and Dow, B. M., 1989, Foveal tracking cells in the superior temporal sulcus of the macaque monkey, Exp. Brain Res. 78: 113–131.

    CAS  PubMed  Google Scholar 

  • Evdokimidis, I., Mergner, ‘f., and Lucking, C. IL, 1992, Dependence of presaccadic cortical poten tials on the type of saccadic eye movement, Electroenceph. Clin. Neurophysiol. 83: 179–191.

    Article  CAS  Google Scholar 

  • Evinger, C., Manning, K. A., Pellegrini, J. J., Basso, M. A., Powers, A. S., and Sibony, P. A., 1994, Not looking while leaping: The linkage ofblin king and saccadic gaze shifts, Exp. Brain Res. 100: 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Ferrier, D., 1874, The localization of function in brain, Proc. R. Soc. Lond. 22: 229–232.

    Google Scholar 

  • Ferrier, D., 1875, Experiments on the brain of monkeys, Proc. R. Soc. Lond. 23: 409–432.

    Google Scholar 

  • Fischer, B., and Weber, H., 1993, Express saccades and visual attention, Behay. Brain Sci. 16: 553–610.

    Article  Google Scholar 

  • Fisk, J. D., and Oxidate, M. A., 1985, The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space, Exp. Brain Res. 60: 159–178.

    Article  CAS  PubMed  Google Scholar 

  • Flanders, M., ‘Fillery, S. 1. If., and Soechting, J. F., 1992, Early stages in a sensorimotor transformation, Behay. Brain Sci. 15: 309–362.

    Article  Google Scholar 

  • Foerster, O., 1931, The cerebral cortex in man, Lancet 2:309–3I2.

    Google Scholar 

  • Foerster, O., 1936, Motorische Felder und Bahnen. Sensible corticale Felder, in: Handbuch der Neurologic, Volume 6 ( H. Bumke and O. Foerster, eds.), Springer, Berlin, pp. 1–448.

    Google Scholar 

  • Fugassi, L., Gallese, V., di Pellegrino, G., Fadiga, L., Gentilucci, M., Luppino, G., Matelli, M., Pedotti, A., and Rizzolatti, G., 1992, Space coding by premotor cortex, Exp. Brain Res. 89: 686–690.

    Google Scholar 

  • Fox, P. T., Fox, J. M., Raichle, M. E., and Burde, R. M., 1985, The role of cerebral cortex in the generation of voluntary saccades: A positron emission tomographic study, J. Neurophysiol. 54: 348–369.

    CAS  PubMed  Google Scholar 

  • Franke, P., Maier, W., Hardt, J., Frieboes, R., Lichtermann, D., and Hain, C., 1993, Assessment of frontal lobe functioning in schizophrenia and unipolar major depression, Psychopathology 26: 7684.

    Article  Google Scholar 

  • Fried, I., Katz, A., McCarthy, G., Sass, K.J., Williamson, P., Spencer, S. S., and Spencer, D. D., 1991, Functional organization of human supplementary motor cortex studied by electrical stimulation, J. Neurosci. 11: 3656–3666.

    CAS  PubMed  Google Scholar 

  • Fries, W., 1984, Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase, J. Comp. Neurol. 230: 55–76.

    Article  CAS  PubMed  Google Scholar 

  • Frith, C. D., Friston, K., Liddle, P. F., and Frackowiak, R. S. J., 1991, Willed action and the prefrontal cortex in man: A study with l’E’F, Proc. R. Soc. Lond. B 244: 241–246.

    Article  CAS  Google Scholar 

  • Fujii, N., Mushiake, H., ‘lamai, M., and Tanji, J., 1995, Microstimulation of the supplementary eye field during saccade preparation, NeuroReport 6: 2565–2568.

    CAS  Google Scholar 

  • Fukushima, J., Fukushima, K., Miyasaka, K., and Yamashita, I., 1994, Voluntary control of saccadic eye movement in patients with frontal cortical lesions and Parkinsonian patients in comparison with that in schizophrenics, Biol. Psychiatry 36: 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1989, Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex, J. Neurophysiol. 61: 331–349.

    CAS  PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1990, Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms, J. Neurophysiol. 63: 814–831.

    CAS  PubMed  Google Scholar 

  • Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S., 1993a, Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas,” J. Neurosci. 13: 1479–1497.

    CAS  PubMed  Google Scholar 

  • Funahashi, S., Chafee, M. V., and Goldman-Rakic, P. S., 19936, Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task, Nature 365: 753–756.

    Google Scholar 

  • Fuster, J. M., 1973, Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory, J. Neurophysiol. 36: 61–78.

    CAS  PubMed  Google Scholar 

  • Fuster, J. M., 1989, The Prefrontal Cortex, Raven Press, New York.

    Google Scholar 

  • Fuster, J. M., and Jervey, J. P., 1982, Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task, J. Neurosci. 2: 361–375.

    CAS  PubMed  Google Scholar 

  • Fuster, J. M., Bauer, R. H., and Jervey, J. P., 1982, Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks, Exp. Neurol. 77: 679–694.

    Article  CAS  PubMed  Google Scholar 

  • Gaffan, D., and Murray, E. A., 1990, Amygdalar interaction with the mediodorsal nucleus of the thalamus and the ventromedial prefrontal cortex in stimulus-reward associative learning in the monkey, J. Neurosci. 10: 3479–3493.

    CAS  PubMed  Google Scholar 

  • Gaffan, D., Gaffan, E. A., and Harrison, S., 1989, Visual-visual associative memory and reward-association learning in monkeys: The role of the amygdala, J. Neurosci. 9: 558–564.

    CAS  PubMed  Google Scholar 

  • Gaffan, E. A., Gaffan, D., and Harrison, S., 1988, Disconnection of the amygdala from visual association cortex impairs visual reward-association learning in monkeys, J. Neurosci. 8: 3144–3150.

    CAS  PubMed  Google Scholar 

  • Galletti, C., and Battaglini, P. P., 1989, Gaze-dependent visual neurons in area V3A of monkey prestriate cortex, J. Neurosci. 9: 1112–1125.

    CAS  PubMed  Google Scholar 

  • Gaspar, P., Stepniewska, I., and Kaas, J. H., 1992, Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys, J. Comp. Neurol. 325: 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Gaymard, B., Pierrot-Deseilligny, C., and Rivaud, S., 1990, Impairment of sequences of memory guided saccades after supplementary motor area lesions, Ann. Neurol. 28: 622–626.

    Article  CAS  PubMed  Google Scholar 

  • Gaymard, B., Rivaud, S., and Pierrot-Deseilligny, C., 1993, Role of the left and right supplementary motor areas in memory-saccade sequences, Ann. Neurol. 34: 404–406.

    Article  CAS  PubMed  Google Scholar 

  • Gellman, R. S., and Fletcher, W. A., 1992, Eye position signals in human saccadic processing, Exp. Brain Res. 89: 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Gemba, H., Sasaki, K., and Brooks, V. B., 1986, `Error’ potentials in limbic cortex (anterior ungulate area 24) of monkeys during motor learning, Neurosci. Lett. 70:223–227.

    Google Scholar 

  • Gentilucci, M., and Rizzolatti, G., 1989, Cortical motor control of arm and hand movements, in: Vision in Action: The Control of Grasping ( M. A. Goodale, ed.), Ablex, Norwood, NJ, pp. 147–162.

    Google Scholar 

  • Gentilucci, M., Scandolara, C., Pigarev, I., and Rizzolatti, G., 1983, Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position, Exp. Brain Res. 50: 464–468.

    CAS  PubMed  Google Scholar 

  • Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., and Rizzolatti, G., 1988, Functional organization of inferior area 6 in the macaque monkey I. Somatotopy and the control of proximal movements, Exp. Brain Res. 71: 475–490.

    Article  CAS  PubMed  Google Scholar 

  • Ghez, C., Hening, W., and Favilla, M., 1990, Parallel interacting channels in the initiation and specification of motor response features, in: Attention and Performance XIII: Motor Representation and Control ( M. Jeannerod, ed.), Erlbaum, Hillsdale, NJ, pp. 265–293.

    Google Scholar 

  • Gielen, C. C. A. M., van den Heuvel, P. J. M., and van Gisbergen, J. A. M., 1984, Coordination of fast eye and arm movements in a tracking task, Exp. Brain Res. 56: 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Giguere, M., and Goldman-Rakic, P. S., 1988, Mediodorsal nucleus: Areal, laminar and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys, J. Comp. Neurol. 277: 195–213.

    Article  CAS  PubMed  Google Scholar 

  • Glimcher, P. W., and Sparks, D. L., 1992, Movement selection in advance of action in superior colliculus, Nature 355: 542–545.

    Article  CAS  PubMed  Google Scholar 

  • Gnadt, J. W., and Andersen, R. A., 1988, Memory related motor planning activity in posterior parietal cortex of macaque, Exp. Brain Res. 70: 216–220.

    CAS  PubMed  Google Scholar 

  • Godoy, J., Luders, H., Dinner, D. S., Morris, H. H., and Wyllie, E., 1990, Versive eye movements elicited by cortical stimulation of the human brain, Neurology 40: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Godschalk, M., Lemon, R. N., Kuypers, H. G. J. M., and Ronday, H. K., 1984, Cortical afferents and afferents of monkey postarcuate area: An anatomical and electrophysiological study, Exp. Brain Res. 56: 410–424.

    Article  CAS  PubMed  Google Scholar 

  • Godschalk, M., Lemon, R. N., Kuypers, H. G. J. M., and van der Steen, J., 1985, The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements, Behay. Brain Res. 18: 143–157.

    Article  CAS  Google Scholar 

  • Goldberg, G., 1985, Supplementary motor area structure and function: Review and hypotheses, Behay. Brain Sci. 8: 567–616.

    Article  Google Scholar 

  • Goldberg, M. E., and Bruce, C. J., 1985, Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey, Vision Res. 25: 471–481.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M. E., and Bruce, C. J., 1990, Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal, J. Neurophysiol. 64: 489–508.

    CAS  PubMed  Google Scholar 

  • Goldberg, M. E., and Bushnell, M. C., 1981, Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades, J. Neurophysiol. 46: 773–787.

    CAS  PubMed  Google Scholar 

  • Goldberg, M. E., and Segraves, M. A., 1989, Visual and frontal cortices, in: The Neurobiology of. Saccadic Eye Movements ( R. H. Wurtz and M. E. Goldberg, eds.), Elsevier, New York, pp. 283–313.

    Google Scholar 

  • Goldberg, M. E., Bushnell, M. C., and Bruce, C. J., 1986, The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields, Exp. Brain Res. 61: 579–584.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., and Podd, M. H., 1987, Further evidence for dementia of the prefrontal type in schizophrenia? A controlled study of teaching the Wisconsin Card Sorting Test, Arch. Gen. Psychiatry 44: 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P. S., 1987, Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in Handbook of Physiology, Volume 5, The Nervous System ( V. B. Mountcastle, F. Plum, and S. Geiger, eds.), American Physiological Society, Bethesda, MD, pp. 373–417.

    Google Scholar 

  • Goldman-Rakic, P. S., 1988, Topography of cognition: Parallel distributed networks in primate association cortex, Annu. Rev. Neurosci. 11: 137–156.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P. S., 1990, Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates, Prog. Brain Res. 85: 325–335.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic, P. S., and Porrino, L. J., 1985, The primate mediodorsal (MD) nucleus and its projection to the frontal lobe, J. Comp. Neurol. 242: 535–560.

    Article  CAS  PubMed  Google Scholar 

  • Goodale, M. A., and Milner, A. D., 1992, Separate visual pathways for perception and action, TINS 15: 20–25.

    CAS  PubMed  Google Scholar 

  • Gottlieb, J. P., Bruce, C. J., and MacAvoy, M. G., 1993, Smooth eye movements elicited by micro-stimulation in the primate frontal eye field, J. Neurophysiol. 69: 786–799.

    CAS  PubMed  Google Scholar 

  • Gottlieb, J. P., MacAvoy, M. G., and Bruce, C. J., 1994, Neural responses related to smooth-pursuit eye movements and their correspondence with electrically elicited smooth eye movements in the primate frontal eye field, J. Neurophysiol. 72: 1634–1653.

    CAS  PubMed  Google Scholar 

  • Gould, H. J., Cusick, C. G., Pons, T. P., and Kaas, J. H., 1986, The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys, J. Comp. Neurol. 247: 297–325.

    Article  PubMed  Google Scholar 

  • Gower, E. C., 1989, Efferent projections from limbic cortex of the temporal pole to the magnocellutar medial dorsal nucleus in the rhesus monkey, J. Comp. Neurol. 280: 343–358.

    Article  CAS  PubMed  Google Scholar 

  • Grafton, S. T., Mazziotta, J. C., Woods, R. P., and Phelps, M. E., 1992, Human functional anatomy of visually guided finger movements, Brain 115: 565–587.

    Article  PubMed  Google Scholar 

  • Graziano, M. S. A., Yap, G. S., and Gross, C. G., 1994, Coding of visual space by premotor neurons, Science 266: 1054–1057.

    Article  CAS  PubMed  Google Scholar 

  • Grunbaum, A. S. F., and Sherrington, C. S., 1901, Observations on the physiology of the cerebral cortex of some of the higher apes, l’roc. R. Soc. 69: 206–209.

    Article  Google Scholar 

  • Guitton, D., 1991, Control of saccadic eye and gaze movements by the superior colliculus and basal ganglia, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 244–276.

    Google Scholar 

  • Guitton, D., and Volle, M., 1987, Gaze control in humans: Eye—head coordination during orienting movements to targets within and beyond the oculomotor range, J. Neurophysiol. 58: 427–459.

    CAS  PubMed  Google Scholar 

  • Guitton, D., Buchtet, H. A., and Douglas, R. M., 1985, Frontal Lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades, Exp. Brain Res. 58: 455–472.

    Article  CAS  PubMed  Google Scholar 

  • Haber, S. N., Kunishio, K., Mizobuchi, M., and Lynd-Balta, E., 1995, The orbital and medial prefrontal circuit through the primate basal ganglia, J. Neurosci. 15: 4851–4867.

    CAS  PubMed  Google Scholar 

  • Hallett, M., 1994, Movement-related cortical potentials, Electromyography Clin. Neurophysiol. 34: 5–13.

    CAS  Google Scholar 

  • Hallett, P. E., and Adams, B. D., 1980, The predictability of saccadic latency in a novel voluntary oculomotor task, Vision Res. 20: 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Hattet, P. E., and Lightstone, A. D., 1976, Saccadic eye movement towards stimuli triggered by prior saccades, Vision Res. 16: 99–106.

    Article  Google Scholar 

  • Halsband, U., and Freund, H.-J., 1990, Premotor cortex and conditional motor learning in man, Brain 113: 107–222.

    Article  Google Scholar 

  • Halsband, U., and Passingham, R., 1982, The role of premotor and parietal cortex in the direction of action, Brain Res. 240: 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Halsband, U., and Passingham, R. E., 1985, Premotor cortex and the conditions for movements in monkeys (Macaca fascicularis), Behan. Brain Res. 18: 269–277.

    Article  CAS  Google Scholar 

  • Halsband, U., Ito, N., ‘Fanji, J., and Freund, H.-J., 1993, The role of premotor cortex and the supplementary motor area in the temporal control of movement in man, Brain 116: 243–266.

    Google Scholar 

  • Halsband, U., Matsuzaka, Y., and ‘Fanji, J., 1994, Neuronal activity in the primate supplementary, presupplementary and premotor cortex during externally and internally instructed sequential movements, Neurosci. Res. 20: 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Hanes, D. P., and Schall, J. D., 1995, Countermanding saccades in macaque, Visual Neurosci. 12: 929–937.

    Article  CAS  Google Scholar 

  • Hanes, D. P., and Schall, J. D., 1996, Neural control of voluntary movement initiation, Science 274: 427–430.

    CAS  Google Scholar 

  • Hanes, D. P., Thompson, K. G., and Schall, J. D., 1995, Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis, Exp. Brain Res. 103: 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Harting, J. K., Huerta, M. F., Frankfurter, A. L., Strominger, N. L., and Royce, G.J., 1980, Ascending pathways from monkey superior colliculus: An autoradiographic analysis, J. Comp. Neurol. 192: 853–882.

    Article  CAS  PubMed  Google Scholar 

  • He, S.-Q., Dum, R. P., and Strick, P. L., 1995, topographic: organization of corticospinal projections from the frontal lobe: Motor areas on the medial surface of the hemisphere, J. Neurrosci. 15: 3284–3306.

    Google Scholar 

  • Heinen, S. J., 1995, Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements, Exp. Brain Res. 104: 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Helmholtz, H., 1962, Handbook of Physiological Optics 118661, Dover, New York.

    Google Scholar 

  • Henik, A., Rafal, R., and Rhodes, D., 1994, Endogenously generated and visually guided saccades after lesions of the human frontal eye fields,,. Cognitive Neurosci. 6: 400–411.

    Article  Google Scholar 

  • Hepp, K., Henn, V., Vilis, T., and Cohen, B., 1989, Brainstem regions related to saccade generation, in: The Neurobiology of Saccadic Eye Movements (R. H. Wurtz and M. E. Goldberg, Elsevier, Amsterdam.

    Google Scholar 

  • Hikosaka, O., and Wurtz, R. H., 1983a, Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses,/ Neurophysiol. 49: 1268–1284.

    CAS  Google Scholar 

  • Hikosaka, O., and Wurtz, R. H., 19836, Visual and oculomotor functions of monkey substantia nigra pars reticulata. I V. Relation of substantia nigra to superior colliculus, J. Neurophysiol. 49: 1285–1301.

    Google Scholar 

  • Hikosaka, O., and Wurtz, R. H., 1985a, Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in the monkey superior colliculus, J. Nearsphysiol. 53: 266–291.

    CAS  Google Scholar 

  • Hikosaka, O., and Wurtz, R. H., 1985b, Modification of saccadic eye movements by GARA-related substances. II. Effects of muscimol in the monkey substantia nigra pars reticulate, J. Nearsphysiol. 53: 292–307.

    CAS  Google Scholar 

  • Hikosaka, O., Sakamoto, M., and Usui, S., 1989a, Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements, J. Neurophysiol. 61: 780–798.

    CAS  PubMed  Google Scholar 

  • Hikosaka, O., Sakamoto, M., and Usui, S., 1989b, Functional properties of monkey caudate neurons. Il. Visual and auditory responses, /. Neuropleysiol. 61: 799–813.

    CAS  Google Scholar 

  • Hikosaka, O., Sakamoto, M., and Usui, S., 1989e, Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward, J. Neurophysiol. 61: 814–832.

    CAS  PubMed  Google Scholar 

  • Hikosaka, O., Sakamoto, M., and Miyashita, N., 1993, Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey, Exp. Brain Res. 95: 457–472.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, G., 1938, The cerebral integration of the ocular movements, Br. Med. J. 2: 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Honda, H., 1990, Eye movements to a visual stimulus flashed before, during or after a saccade, in: Attention and Performance XIII: Motor Representation and Control ( M. Jeannerod, ed.), Erlbaum, Hillsdale, NJ, pp. 567–582.

    Google Scholar 

  • Honda, H., 1991, The timecourse of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades, Vision Res. 31: 1915–1921.

    Article  CAS  PubMed  Google Scholar 

  • Horsley, V., and Schäfer, E. A., 1888, A record of experiments upon the functions of the cerebral cortex, Phil. Trans. R. Soc. Lond. B 179: 1–45.

    Article  Google Scholar 

  • Huerta, M. F., and Kaas, J. H., 1990, Supplementary eye field as defined by intracortical micro-stimulation: Connections in macaques, f. Comp. Neurol. 293: 299–330.

    Article  CAS  Google Scholar 

  • Huerta, M. F., Krubitzer, L. A., and Kaas, J. H., 1986, Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys and macaque monkeys: 1. Subcortical connections, J. Comp. Neurol. 253: 415–439.

    Article  CAS  Google Scholar 

  • Huerta, M. F., Krubitzer, L. A., and Kaas, J. H., 1987, Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys and macaque monkeys: 11. Cortical connections, J. Comp. Neurol. 265: 332–361.

    Article  CAS  Google Scholar 

  • Hummelsheim, H., Wiesendanger, M., Bianchetti, M., Wiesendanger, R., and Macpherson, J., 1986, Further investigations of the efferent linkage of the supplementary motor area (SMA) with the spinal cord in the monkey, Exp. Brain Res. 65: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Hummelsheim, H., Bianchetti, M., Wiesendanger, M., and Wiesendanger, R., 1988, Sensory inputs to the agranular motor fields: A comparison between precentral, supplementary motor and premotor areas in the monkey, Exp. Brain Res. 69: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Hutchins, K. I)., Martina, A. M., and Strick, P. L., 1988, Corticospinal projections from the medial wall of the hemisphere, Exp. Brain Res. 71: 667–672.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda, A., I.üders, H. O., Burgess, R. C., and Shibasaki, H., 1992, Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements, Brain 115: 1017–1043.

    Google Scholar 

  • Ilinsky, I. A., Jouandet, M. L., and Goldman-Rakic, P. S., 1985, Organization of the nigrothalamocortical system in the rhesus monkey, J. Comp. Neurol. 236: 315–330.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S.-I., 1982, Prefrontal unit activity of macaque monkeys during auditory and visual reaction time tasks, Brain Res. 247: 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Iversen, S. D., and Mishkin, M., 1970, Perseverative interference in monkey following selective lesions of the inferior prefrontal convexity, Exp. Brain Res. 11: 376–386.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, C. F., 1936, Studies of cerebral function in primates: I. “Che functions of the frontal association areas in monkeys, Comp. Psychol. Monogr. 13: 3–60.

    Google Scholar 

  • Jay, M. F., and Sparks, D. L., 1987a, Sensorimotor integration in the primate superior colliculus. I. Motor convergence, J. Neurophysiol. 57: 22–34.

    CAS  PubMed  Google Scholar 

  • Jay, M. F., and Sparks, I). L., 19876, Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals, J. Neurophysiol. 57: 35–55.

    Google Scholar 

  • Jolly, W. A., and Simpson, S., 1907, The functions of the Rolandic cortex in monkeys, Proc. R. Soc. Edinb. 27: 64–78.

    Google Scholar 

  • Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., and Mintun, M. A., 1993, Spatial working memory in humans as revealed by PET, Nature 363: 623–625.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, J. P., and Barone, P., 1987, Prefrontal unit activity during a delayed oculomotor task in the monkey, Exp. Brain Res. 67: 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Jürgens, R., Becker, W., and Kornhuber, H. H., 1981, Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback, Biol. Cybernet. 39: 87–96.

    Article  Google Scholar 

  • Kaas, J. H., 1995, Human visual cortex: Progress and puzzles, (,’urr. Biol. 5: 1126–1128.

    Article  CAS  Google Scholar 

  • Kalaska, J., and Crammond, 1)., 1992, Cerebral cortical mechanisms of reaching movements, Science 266: 1517–1523.

    Article  Google Scholar 

  • Karpov, B. A., Luria, A. R., and Yarbus, A. L., 1968, Disturbance of the structure of active perception in lesions of the posterior and anterior regions of the brain, Neuropsychologia 6: 157–166.

    Article  Google Scholar 

  • Kawamura, K., and Naito, J., 1984, Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques, Neurosci. Res. 1: 89–103.

    Article  CAS  PubMed  Google Scholar 

  • Keating, E. G., 1991, Frontal eye field lesions impair predictive and visually-guided pursuit eye movements, Exp. Brain Res. 86: 311–323.

    Article  CAS  PubMed  Google Scholar 

  • Keating, C. F., and Keating, E. G., 1993, Monkeys and mug shots: Cues used by rhesus monkeys (Macaca mulatta) to recognize a human face, J. Comp. Psychol. 107: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Keller, E. K., 1991, The brainstem, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 200–223.

    Google Scholar 

  • Keller, I., and Heckhausen, H., 1990, Readiness potentials preceding spontaneous motor acts: Voluntary vs. involuntary control, Electroenceph. Clin. Neurophysiol. 76: 351–361.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura, J., Shibasaki, H., Takagi, A., Nabeshima, H., and Yamaguchi, A., 1993, Enhanced negative slope of cortical potentials before sequential as compared with simultaneous extensions of two fingers, Electroenceph. Clin. Neurophysiol. 86: 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Klostermann, W., Kompf, D., Heide, W., Verleger, R., Wauschkuhn, B., and Seyfert, “1’., 1994, The presaccadic cortical negativity prior to self-paced saccades with and without visual guidance. Electroenceph. Clin. Neurophysiol. 91: 219–228.

    Google Scholar 

  • Kojima, S., 1980, Prefrontal unit activity in the monkey: Relation to visual stimuli and movements, Exp. Neurol. 69: 110–123.

    Article  CAS  PubMed  Google Scholar 

  • Kojima, S., and Goldman-Rakic, P. S., 1982, Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response, Brain Res. 248: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, H., and Suzuki, H., 1985, Projections from the functional subdivisions of the frontal eye field to the superior colliculus in the monkey, Brain Res. 327: 324–327.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, H., and Wurtz, R. H., 1988, Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons, J. Neurophysiol. 60: 580–603.

    CAS  PubMed  Google Scholar 

  • Kowler, E., 1990, The role of visual and cognitive processes in the control of eye movement, in: Eye Movements and Their Role in Visual and Cognitive Processes ( E. Kowler, ed.), Elsevier, New York, pp. 1–70.

    Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular and retinotopic patterns, Vis. Neurosci. 5: 165–204.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, K., and Funahashi, S., 1982, Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking, J. Neurophysiol. 47: 362–376.

    CAS  PubMed  Google Scholar 

  • Kubota, K., and Komatsu, H., 1985, Neuron activities of monkey prefrontal cortex during the learning of visual discrimination tasks with GO/NO-GO performances, Neurosci. Res. 3: 106–129.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, K., and Niki, H., 1971, Prefrontal cortical unit activity and delayed alternation performance in monkeys, J. Neurophysiol. 34: 337–347.

    CAS  PubMed  Google Scholar 

  • Kubota, K., Iwamoto, T., and Suzuki, H., 1974, Visuokinetic activities of primate prefrontal neurons during delayed-response performance, J. Neurophysiol. 37: 1197–1212.

    CAS  PubMed  Google Scholar 

  • Kubota, K., Tonoike, M., and Mikami, A., 1980, Neuronal activity in the monkey dorsolateral prefrontal cortex during a discrimination task with delay, Brain Res. 183: 29–42.

    Article  CAS  PubMed  Google Scholar 

  • Kurata, K., 1989, Distribution of neurons with set and movement related activity before hand and foot movements in the premotor cortex of rhesus monkeys, Exp. Brain Res. 77: 245–256.

    Article  CAS  PubMed  Google Scholar 

  • Kurata, K., 1991, Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of macaque monkeys, Neurosci. Res. 12: 263–280.

    Article  CAS  PubMed  Google Scholar 

  • Kurata, K., 1994, Information processing for motor control in primate premotor cortex, Behay. Brain Res. 61: 135–142.

    Article  CAS  Google Scholar 

  • Kurata, K., and Hoffman, D. S., 1994, Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys, J. Neurophysiol. 71: 1151–1164.

    CAS  PubMed  Google Scholar 

  • Kurata, K., and Tanji, J., 1985, Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. II. Responses to movement triggering vs. nontriggering sensory signals, /. Neurophysiol. 53: 142–152.

    CAS  Google Scholar 

  • Kurata, K., and Wise, S. P., 1988, Premotor cortex of rhesus monkeys: Set-related activity during two conditional motor tasks, Exp. Brain Res. 69: 327–343.

    Article  CAS  PubMed  Google Scholar 

  • Kurata, K., Okano, K., and Tanji, J., 1985, Distribution of neurons related to a hindlimb as opposed to forelimb movement in the monkey premotor cortex, Exp. Brain Res. 60: 188–191.

    Article  CAS  PubMed  Google Scholar 

  • Kurtzberg, D., and Vaughan, H. G., 1982, Topographic analysis of human cortical potentials preceding self-initiated and visually triggered saccades, Brain Res. 243: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Kustov, A. A., and Robinson, D. A., 1995, Modified saccades evoked by stimulation of macaque superior colliculus account for properties of resettable integrator, J. Neurophysiol. 73: 1724–1728.

    CAS  PubMed  Google Scholar 

  • Kwan, H. C., Mackay, W. A., Murphy, J. T., and Wong, Y. C., 1985, Properties of visual cue responses in primate precentral cortex, Brain Res. 343: 24–35.

    Article  CAS  PubMed  Google Scholar 

  • Lang, W., Zilch, O., Koska, C., Lindinger, G., and Deecke, L., 1989, Negative cortical dc shifts preceding and accompanying simple and complex sequential movements, Exp. Brain Res. 74: 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Lang, W., Obrig, H., Lindinger, G., Cheyne, D., and Deecke, L., 1990, Supplementary motor area activation while tapping bimanually different rhythms in musicians, Exp. Brain Res. 79: 504–514.

    Article  CAS  PubMed  Google Scholar 

  • Lang, W., Cheyne, 1)., Kristeva, R., Beisteiner, R., Lindinger, G., and Deecke, L., 1991, Three-dimensional localization of SMA activity preceding voluntary movement. A study of electric and magnetic fields in a patient with infarction of the right supplementary motor area, Exp. Brain Res. 87: 688–695.

    CAS  Google Scholar 

  • Lang, W., Petit, L., Hölander, P., Pietrzyk, U., Tzourio, N., Mazoyer, B., and Berthoz, A., 1994, A positron emission tomography study of oculomotor imagery, NeuroReport 5: 921–924.

    Article  CAS  PubMed  Google Scholar 

  • Latto, R., 1978a, The effects of bilateral frontal eye-field lesions on the learning of visual search task by rhesus monkeys, Brain Res. 147: 370–376.

    Article  CAS  PubMed  Google Scholar 

  • Latto, R., 1978b, The effects of bilateral frontal eye-field, posterior parietal or superior collicular lesions on visual search in the rhesus monkey, Brain Res. 146: 35–50.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., and Tehovnik, E., 1995, Topographic distribution of fixation-related units in the dorsomedial frontal cortex of the rhesus monkey, Eur. J. Neurosci. 7: 1005–1011.

    Article  CAS  PubMed  Google Scholar 

  • Leichnetz, G. R., Spencer, R. F., Hardy, S. G. P., and Astruc, J., 1981, The prefrontal corticotectal projection in the monkey: An antérograde and retrograde horseradish peroxidase study, Neuroscience 6: 1023–1041.

    Article  CAS  PubMed  Google Scholar 

  • Leichnetz, G. R., Spencer, R. F., and Smith, D.J., 1984a, Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey, J. Comp. Neurol. 228: 359–387.

    Article  CAS  PubMed  Google Scholar 

  • Leichnetz, G. R., Smith, D. J., and Spencer, R. F., 1984b, Cortical projections to the paramedian tegmental and basilar pons in the monkey, J. Comp. Neurol. 228: 388–408.

    Article  CAS  PubMed  Google Scholar 

  • Levin, S., 1984, Frontal lobe dysfunctions in schizophrenia—I. Eye movement impairments, J. Psychiatr. Res. 18: 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Levin, H. S., Eisenberg, H. M., and Benton, A. L., 1991, Frontal Lobe Function and Dysfunction, Oxford University Press, Oxford.

    Google Scholar 

  • Levinsohn, G., 1909, Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges, Graefe Arch. Ophthalmol. 71: 313–378.

    Article  Google Scholar 

  • Leyton, A. S. F., and Sherrington, C. S., 1917, Observations on the excitable cortex of the chimpanzee, orang-utan and gorilla, Q. J. Exp. Physiol. 11: 135–222.

    Google Scholar 

  • Libet, B., 1985, Unconscious cerebral initiative and the role of conscious will in voluntary action, Behan. Brain Sci. 8: 529–566.

    Article  Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1991, Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3HJSCH23390, Neuroscience 40: 657–71.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S. H., Dinner, D. S., Pillay, P. K., Luders, H., Morris, H. H., Klem, G., Wyllie, E., and Awad, I. A., 1994, Functional anatomy of the human supplementary sensorimotor area: Results of extraoperative electrical stimulation, Electroenceph. Clin. Neurophysiol. 91: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg, T., Apicella, 1’., and Schultz, W., 1992, Responses of monkey dopamine neurons during learning of behavioral reactions, J. Neurophysiol. 67: 145–163.

    CAS  Google Scholar 

  • Lu, M.-’F., Preston, J. B., and Strick, P. L., 1994, Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe, J. Comp. Neural. 341: 375–392.

    Google Scholar 

  • Luppino, G., Matelli, M., and Rizzolatti, G., 1990, Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex, Exp. Brain Res. 82: 214–218.

    Article  CAS  PubMed  Google Scholar 

  • Luppino, G., Matelli, M., Camarda, R. M., Gallese, V., and Rizzolatti, G., 1991, Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey, J. Comp. Neurol. 311: 463–482.

    Article  CAS  PubMed  Google Scholar 

  • Luppino, G., Matelli, M., Camarda, R. M., and Rizzolatti, G., 1993, Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey, J. Comp. Neural. 338: 114–140.

    Article  CAS  Google Scholar 

  • Luria, A. R., Karpov, B. A., and Yarbus, A. L., 1966, Disturbances of active visual perception with lesions of frontal lobes, Cortex 2: 202–212.

    Article  Google Scholar 

  • Lynch, J. C., 1987, Frontal eye field lesions in monkeys disrupt visual pursuit, Exp. Brain Res. 68: 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J. C., Mountcastle, V. B., Talbot, W. H., and Yin, T. C. T., 1977, Parietal lobe mechanisms for directed visual attention, J. Nearophysiol. 40: 362–389.

    CAS  Google Scholar 

  • Lynch, J. C., Hoover, J. E., and Strick, P. L., 1994, Input to the primate frontal eye field from the substantia nigra, superior colliculus and dentate nucleus demonstrated by transneuronal transport, Exp. Brain Res. 100: 181–186.

    Article  CAS  PubMed  Google Scholar 

  • MacAvoy, M. G., and Bruce, C. J., 1995, Comparison of the smooth eye tracking disorder of schizophrenics with that of nonhuman primates with specific brain lesions, Int. J. Neurosci. 80: 117–151.

    Article  CAS  PubMed  Google Scholar 

  • MacAvoy, M. G., Gottlieb, J. P., and Bruce, C. J., 1991, Smooth-pursuit eye movement representation in the primate frontal eye field, Cerebral Cortex 1: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Mann, S. E., Thau, R., and Schiller, P. H., 1988, Conditional task-related responses in monkey dorsomedial frontal cortex, Exp. Brain Res. 69: 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Marrocco, R. T., 1978, Saccades induced by stimulation of the frontal eye fields: Interaction with voluntary and reflexive eye movements, Brain Res. 146: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Massion, J., Viallet, F., Massarino, R., and Khalil, R., 1989, “Fhe supplementary motor area region is involved in the coordination between movement and posture, C. R. Acad. Paris 308: 417–423.

    Google Scholar 

  • Matelli, M., Luppino, G., and Rizzolatti, G., 1985, Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey, Behay. Brain Res. 18: 125–136.

    Article  CAS  Google Scholar 

  • Matelli, M., Camarda, R., Glickstein, M., and Rizzolatti, G., 1986, Afferent and efferent projections of the inferior area 6 in the macaque monkey,/ Comp. Neurol. 251: 281–298.

    Article  CAS  Google Scholar 

  • Matelli, M., Luppino, G., and Rizzolatti, G., 1991, Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey, J. Comp. Neurol. 311: 445–462.

    Article  CAS  PubMed  Google Scholar 

  • Matelli, M., Rizzolatti, G., Bettinardi, V., Gilardi, M. C., Perani, D., Rizzo, G., and Fazio, F., 1993, Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: A PET study, NeuroReport 4: 1295–1298.

    Article  CAS  PubMed  Google Scholar 

  • Matin, I.., 1985, Visual localization and eye movements, in: Handbook of Perception and Human PerJòrmance (K. R. Boff, L. Kaufman, and J. P. “Thomas, eds.), Wiley, New York.

    Google Scholar 

  • Matsuzaka, Y., Aizawa, H., and Tanji, J., 1992, A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: Neuronal activity during a learned motor task,/ Neurophysiol. 68: 653–662.

    CAS  Google Scholar 

  • Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 68, 1332–1344.

    CAS  PubMed  Google Scholar 

  • Mays, L. E., and Sparks, D. L., 1980, Dissociation of visual and saccade-related responses in superior colliculus neurons, J. Neurophysiol. 43: 207–232.

    CAS  PubMed  Google Scholar 

  • Melamed, E., and Larsen, B., 1979, Cortical activation pattern during saccadic eye movements in humans: Localization by focal cerebral blood flow increases, Ann. Neurol. 5: 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways ? Ann. Rev. Neurosci. 16: 369–402.

    Article  CAS  PubMed  Google Scholar 

  • Mikami, A., Ito, S., and Kubota, K., 1982, Visual response properties of dorsolateral prefrontal neurons during visual fixation task, J. Neurophysiol. 47: 593–605.

    CAS  PubMed  Google Scholar 

  • Miller, E. K., Li, L., and Desimone, R., 1993, Activity of neurons in anterior inferior temporal cortex during a short-term memory task, j. Neurosci. 13: 1460–1478.

    CAS  PubMed  Google Scholar 

  • Miller, J., 1988, Discrete and continuous models of human information processing: ‘Theoretical distinctions and empirical results, Acta Psychol. 67: 191–257.

    Article  CAS  Google Scholar 

  • Milner, B., Petrides, M., and Smitt, M. L., 1985, Frontal lobes and the temporal organization of memory, Hum. Neurobiol. 4: 137–142.

    CAS  PubMed  Google Scholar 

  • Mishkin, M., and Manning, F. J., 1978, Non-spatial memory after selective prefrontal lesions in monkeys, Brain Res. 143: 313–324.

    Article  CAS  PubMed  Google Scholar 

  • Mitz, A. R., and Godschalk, M., 1989, Eye-movement representation in the frontal lobe of rhesus monkeys, Neurosci. Lett. 106: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Mitz, A. R., Godschalk, M., and Wise, S. P., 1991, Learning-dependent neuronal activity in the premotor cortex: Activity during the acquisition of conditional motor associations, J. Neurosci. 11: 1855–1872.

    CAS  PubMed  Google Scholar 

  • Miyashita, Y., and Chang, H. S., 1988, Neuronal correlate of pictorial short-term memory in the primate temporal cortex, Nature 331: 68–70.

    Article  CAS  PubMed  Google Scholar 

  • Mohler, C. W., Goldberg, M. E., and Wurtz, R. H., 1973, Visual receptive fields of frontal eye field neurons, Brain Res. 61: 385–389.

    Article  CAS  PubMed  Google Scholar 

  • Moran, M. A., Mufson, E. J., and Mesulam, M.-M., 1987, Neural inputs into the temporopolar cortex of the rhesus monkey, J. Comp. Neurol. 256: 88–103.

    Article  CAS  PubMed  Google Scholar 

  • Morecraft, R. J., and Van Hoesen, G. W., 1992, Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: Evidence for somatotopy in areas 24c and 23c, J. Comp. Neural. 322: 471–489.

    Article  CAS  Google Scholar 

  • Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Vis. Neurosci. 4: 555–578.

    Article  CAS  PubMed  Google Scholar 

  • Moser, A., and Kömpf, D., 1990, Unilateral visual exploration deficit in a frontal lobe lesion, Neuro-ophthalmology 10: 39–44.

    Article  Google Scholar 

  • Moster, M. L., and Goldberg, G., 1990, Topography of scalp potentials preceding self-initiated saccades, Neurology 40: 644–648.

    Article  CAS  PubMed  Google Scholar 

  • Mott, F. W., and Schäfer, E. A., 1890, On associated eye-movements produced by cortical faradization of the monkey’s brain, Brain 13: 165–173.

    Article  Google Scholar 

  • Muakkasa, K. F., and Strick, P. L.., 1979, Frontal lobe inputs to primate motor cortex: Evidence for four somatotypically organized “premotor” areas, Brain Res. 177: 176–182.

    Article  Google Scholar 

  • Munoz, D. P., and Wurtz, R. H., 1993, Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge, J. Neurophysiol. 70: 559–575.

    CAS  PubMed  Google Scholar 

  • Mari, R. M., Roster, K. M., and Hess, C. W., 1994, Influence of transcranial magnetic stimulation on the execution of memorized sequences of saccades, Exp. Brain Res. 101: 521–524.

    Google Scholar 

  • Müri, R. M., Rivand, S., Vermersch, A. L, Leger, J. M., and Pierrot-Deseilligny, C., 1995, Effects of transcranial magnetic stimulation over the region of the supplementary motor area during sequences of memory-guided saccades, Exp. Brain Res. 104: 163–166.

    Article  PubMed  Google Scholar 

  • Mushiake, H.,]vase, M., and’Fanji, J., 1991, Neuronal activity in the primate premotor supplementary and precentral motor cortex during visually guided and internally determined sequential movements, J. Neurophysiol. 66: 705–718.

    Google Scholar 

  • Mushiake, H., Fuji’, N., and Tanji, J., 1996, Visually guided saccade versus eye-hand reach: Contrasting neuronal activity in the cortical supplementary and frontal eye fields, J. Neurophysiol. 75: 2187–2191.

    CAS  PubMed  Google Scholar 

  • Nakashima, Y., Momose, T., Sano, I., Katayama, S., Nakajima,’E, Niwa, S., and Matsushita, M., 1994, Cortical control of saccade in normal and schizophrenic subjects: A PET study using a task-evoked rCBF paradigm, Schizophrenia Res. 12: 259–64.

    CAS  Google Scholar 

  • Neumann, O., and Prinz, W., 1990, Prologue: Historical approaches to perception and action, in Relationships Between Perception and Action ( O. Neumann and W. Prinz, eds.), Springer-Verlag, Berlin, pp. 4–19.

    Chapter  Google Scholar 

  • Nichols, M. J., and Sparks, 1). L., 1995, Nonstationary properties of the saccade system: New constraints on models of saccadic control, J. Neurophysiol. 73: 431–435.

    CAS  PubMed  Google Scholar 

  • Niki, H., 1974a, Differential activity of prefrontal units during right and left delayed response trials, Brain Res. 70: 346–349.

    Article  CAS  PubMed  Google Scholar 

  • Niki, H., 19746, Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response, Brain Res. 68: 185–196.

    Google Scholar 

  • Niki, H., t 974e, Prefrontal unit activity (luring delayed alternation in the monkey. II. Relation to absolute versus relative direction of response, Brain Res. 68: 197–204.

    Google Scholar 

  • Niki, H., and Watanabe, M., 1976, Cingulate unit activity and delayed response, Brain Res. 110: 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Niki, H., and Watanabe, M., 1979, Prefrontal and cingulate unit activity during timing behavior in the monkey, Brain Res. 171: 213–224.

    Article  CAS  PubMed  Google Scholar 

  • Niki, H., Sakai, M., and Kubota, K., 1972, Delayed alternation performance and unit activity of the caudate head and medial orbitofrontal gyrus in the monkey, Brain Res. 38: 343–353.

    Article  CAS  PubMed  Google Scholar 

  • Noton, D., and Stark, L., 1971, Scanpaths in saccadic eye movements while viewing and recognizing patterns, Vision Res. 11: 929–942.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, L. G., Munk, M. H. J., Girard, P., and Bullier, J., 1995, Visual latencies in areas V1 and V2 of the macaque monkey, Visual Neuroses. 12: 371–384.

    Article  CAS  Google Scholar 

  • O’Driscoll, G. A., Alpert, N. M., Matthysse, S. W., Levy, D. L., Rauch, S. L., and Holzman, P. S., 1995, Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography, Proc. Nall. Acad. Sci. USA 92: 925–929.

    Article  Google Scholar 

  • O’Sullivan, E. P., Jenkins, I. H., Henderson, L., Kennard, C., and Brooks, D. J., 1995, The functional anatomy of remembered saccades: A PET study, NeuroReport 6: 2141–2144.

    Article  PubMed  Google Scholar 

  • Okano, K., 1992, Temporal priority of premotor cortex over nearby areas in receiving visual cues in primates, NeuroReport 3: 389–392.

    Article  CAS  PubMed  Google Scholar 

  • Okano, K., and ‘Fanji, J., 1987, Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement, Exp. Brain Res. 66: 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Olson, C. R., and Gettner, S. N., 1995, Object-centered direction selectivity in the macaque supplementary eye field, Science 269: 985–988.

    CAS  Google Scholar 

  • Orgogozo, J. M., and Larsen, B., 1979, Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area, Science 206: 847–850.

    Article  CAS  PubMed  Google Scholar 

  • Ottes, F. P., Van Gisbergen, J. A. M., and Eggermont, J. J., 1986, Visuomotor fields of the superior colliculus: A quantitative model, Vision Res. 26: 857–873.

    Article  CAS  PubMed  Google Scholar 

  • Pardo, J. V., Pardo, P.,J., Jailer, K. W., and Raichle, M. E., 1990, The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm, Proc. Nati. Acad. Sci. USA 87: 256–259.

    Article  CAS  Google Scholar 

  • Parthasarathy, H. B., Schall, J. I)., and Graybiel, A. M., 1992, Distributed but convergent ordering of corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey,/ Neurosci. 12: 4468–4488.

    CAS  Google Scholar 

  • Passingham, R. E., 1985, Prefrontal cortex and the sequencing of movement in monkeys (Macaca mulatta), Neuropsychologia 23: 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Passingham, R. E., 1988, Premotor cortex and preparation for movement, Exp. Brain. Res. 70: 590–596.

    Article  CAS  PubMed  Google Scholar 

  • Passingham, R. E., 1989, Premotor cortex and the retrieval of movement, Brain Beluev. Evol. 33: 189–192.

    Article  CAS  Google Scholar 

  • Passingham, R. E., 1993, The Frontal Lobes and Voluntary Action, Oxford University Press, Oxford.

    Google Scholar 

  • Passingham, R. E., Chen, Y. C., and Thaler, D., 1989, Supplementary motor cortex and self-initiated movement, in: Neural Programming ( M. Ito, ed.), Karger, Basel, pp. 13–24.

    Google Scholar 

  • Paulescu, E., Frith, C. D., and Frackowiak, R. S. J., 1993, ‘Ile neural correlates of the verbal component of working memory, Nature 362: 342–344.

    Google Scholar 

  • Paus, T., 1996, Location and function of the human frontal eye field: A selective review, Neuropsychologia 34: 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Paus, T., Petrides, M., Evans, A. C., and Meyer, E., 1993, Role of human anterior cingulate cortex in the control of oculomotor, manual and speech responses: A positron emission tomography study, J. Neurophysiol. 70: 453–469.

    CAS  PubMed  Google Scholar 

  • Paus, T., Marrett, S., Worsley, K. J., and Evans, A. C., 1995, Extra-retinal modulation of cerebral blood-flow in the human visual cortex: Implications for saccadic suppression, J. Neurophysiol. 74: 2179–2183.

    CAS  PubMed  Google Scholar 

  • Penfield, W., and Boldrey, E., 1937, Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation, Brain 60: 389–443.

    Article  Google Scholar 

  • Penfield, W., and Welch, K., 1949, The supplementary motor area in the cerebral cortex of man, Trans. Ant. Neurol. Assoc. 74: 179–184.

    Google Scholar 

  • Penfield, W., and Welch, K., 1951, The supplementary motor area of the cerebral cortex: A clinical and experimental study, Arch. Neurol. Psychiat. 66: 289–317.

    Article  CAS  Google Scholar 

  • Perecman, E., ed., 1987, The Frontal Lobes Revisited, IRBN Press, New York.

    Google Scholar 

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., and Raichle, M. E., 1988, Positron emission tomographic studies of the cortical anatomy of single-word processing, Nature 331: 585–589.

    Article  CAS  PubMed  Google Scholar 

  • Petit, L., Orssaud, C., ‘Fzourio, N., Salamon, G., Mazoyer, B., and Berthoz, A., 1993, PET study of voluntary saccadic eye movements in humans: Basal ganglia-thalamocortical system and cingulate cortex involvement, J. Neurophysiol. 69: 1009–1017.

    CAS  Google Scholar 

  • Petit, L., Tzourio, N., Orssaud, C., Pietrzyk, U., Berthoz, A., and Mazoyer, B., 1995, Functional neuroanatomy of the human visual fixation system, Eur. J. Neurosci. 7: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Petit, L., Orssaud, C., Tzourio, N., Crivello, F., Berthoz, A., and Mazoyer, B., 1996, Functional anatomy of a prelearned sequence of horizontal saccades in humans,/ Neurosci. 16: 3714–3726.

    CAS  Google Scholar 

  • Petrides, M., 1985, Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey, Behay. Brain Res. 16: 95–101.

    Article  CAS  Google Scholar 

  • Petrides, M., 1987, Conditional learning and the primate frontal cortex, in: The Frontal Lobes Revisited ( E. Perecman, ed.), IRBN Press, New York, pp. 91–108.

    Google Scholar 

  • Petrides, M., 1991, Monitoring of selections of visual stimuli and the primate frontal cortex, Proc. R. Soc. Land. B 246: 293–298.

    Article  CAS  Google Scholar 

  • Petrides, M., 1994a, Frontal lobes and behavior, Curr. Opin. Neurohiol. 4: 207–211.

    Article  CAS  Google Scholar 

  • Petrides, M., 19941), Frontal lobes and working memory: Evidence from investigations of the effects of cortical excisions in nonhuman primates, in: Handbook of Neuropsychology, Volume 9. (F. Boller and J. Grafman, eds.), Elsevier, New York, pp. 59–82.

    Google Scholar 

  • Petrides, M., 1995, Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey, J. Neurosci. 15: 359–375.

    CAS  PubMed  Google Scholar 

  • Petrides, M., and Pandya, D. N., 1984, Projections to the frontal cortex from the posterior parietal region in the rhesus monkey, J. Comp. Neural. 228: 105–116.

    Article  CAS  Google Scholar 

  • Petrides, M., and Pandya, D. N., 1994, Comparative architectonic analysis of the human and the macaque frontal cortex, in: Handbook of Neuropsychology, Volume 9 ( F. Boller and J. Grafman, eds.), Elsevier, New York, pp. 17–58.

    Google Scholar 

  • Petrides, M., Alivisatos, B., Evans, A. C., and Meyer, E., 1993, Dissociation of human mid-dor solateral from posterior dorsolateral frontal cortex in memory processing, Proc. Natl. Acad. Sci. USA 90: 873–877.

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., and Agid, Y., 1991a, Cortical control of reflexive visually-guided saccades, Brain 114: 1473–1485.

    Article  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., and Agid, Y., 1991b, Cortical control of memory-guided saccades in man, Exp. Brain Res. 83: 607–617.

    Article  CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny, C., Israël, I., Berthoz, A., Rivaud, S., and Gaymard, B., 1993, Role of different frontal lobe areas in the control of horizontal component of memory-guided saccades in man, Exp. Brain Res. 95: 166–17 1.

    Google Scholar 

  • Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., Mûri, R., Vermersch, A.-I., 1995, Cortical control of saccades, Ann. Neurol. 37: 557–567.

    Article  CAS  PubMed  Google Scholar 

  • Pigarev, I. N., Rizzolatti, G., and Scandolara, C., 1979, Neurons responding to visual stimuli in the frontal lobe of macaque monkeys, Neurosci. Lett. 12: 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Pola, J., and Wyatt, H. J., 1991, Smooth pursuit: Response characteristics, stimuli and mechanisms, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 138–156.

    Google Scholar 

  • Porrino, L. J., Crane, A. M., and Goldman-Rakic, P. S., 1981, Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkey, J. Comp. Neural. 198: 121–136.

    Article  CAS  Google Scholar 

  • Posner, M. I., and Petersen, S. E., 1990, The attention system of the human brain, Annu. Rev. Neurosci. 13: 25–42.

    Article  CAS  PubMed  Google Scholar 

  • Postier, M. I., Petersen, S. I., Fox, P. T., and Raichle, M. E., 1988, Localization of cognitive operations in the human brain, Science 240: 1627–163I.

    Article  Google Scholar 

  • Praamstra, P., Stegeman, 1). F., Horstink, M. W., Brunia, C. H., and Cools, A. R., 1995, Movement-related potentials preceding voluntary movement are modulated by the mode of movement selection, Exp. Brain Res. 103: 429–439.

    CAS  Google Scholar 

  • Preuss, T. M., 1995, The argument from animals to humans in cognitive neuroscience, in: The Cognitive Neurosciences ( M. S. Gazzaniga, ed.), MIT Press, Cambridge, MA, pp. 1227–1241.

    Google Scholar 

  • Preuss, ‘l’. M., and Goldman-Rakic, P. S., 1989, Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex, J. Comp. Neural. 282: 293–316.

    Article  CAS  Google Scholar 

  • Preuss, T. M., and Goldman-Rakic, P. S., 1991, Myelo-and cytoarchitecture of the granular frontal cortex and surrounding regions of the strepsirhine primate Galago and the anthropoid primate Macaca, J. Comp. Neural. 310: 429–474.

    Article  CAS  Google Scholar 

  • Preuss, T. M., Stepniewska, I., and Kaas, J. H., 1995, Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study, J. Comp. Neural. 371: 649–676.

    Article  Google Scholar 

  • Quintana, J., and Fuster, F. M., 1993, Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration, Cerebral Cortex 3: 122–132.

    Article  CAS  PubMed  Google Scholar 

  • Quintana, J., Yajeya, J., and Fuster, J. M., 1988, Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor informat ion, Brain Res. 474: 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Rao, S. M., Binder, J. R., Bandettini, P. A., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., Lisk, L. M., Morris, G. I.., Mueller, W. M., and Estkowski, 1.. D., 1993, Functional magnetic resonance imaging of complex human movements, Neurology 43: 2311–2318.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, ‘1., and Penfield, W., 1948, Movement of head and eyes from stimulation of human frontal cortex, Re.c. Publ. Assoc. Nerv. Ment. Dis. 27: 346–361.

    Google Scholar 

  • Ray, J. P., and Price, J. 1.., 1993, The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys, J. Comp. Neural. 337: 131

    Google Scholar 

  • Remy, P., Zilbovicius, M., Leroy-Willig, A., Syrota, A., and Samson, Y., 1994, Movement-and task-related activations of motor cortical areas: A positron emission tomographie study, Ann. Neurol. 36: 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Riehle, A., and Requin, J., 1989, Monkey primary motor and premotor cortex: Single-cell activity related to prior information about direction and extent of an intended movement, J. Neurophysial. 61: 534–549.

    CAS  Google Scholar 

  • Risien Russell, J. S., 1894, An experimental investigation of eye movements, J. Physiol. (Lond.) 17: 1–26.

    Google Scholar 

  • Rivaud, S., Müri, R. M., Gaymard, B., Vermersch, A. I., and Pierrot-Deseilligny, C., 1994, Eye movement disorders after frontal eye field lesions in humans, Exp. Brain Res. 102: 110–120.

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti, G., Scandolara, C., Matelli, M., and Gentilucci, M., 1981, Afferent properties of periaraaate neurons in macaque monkeys. I1. Visual responses, Behay. Brain Res. 2: 147–163.

    Article  CAS  Google Scholar 

  • Rizzolatti, G., Camarda, R., Fugassi, L., Gentilucci, M., Luppino, G., and Matelli, M., 1988, Functional organization of inferior area 6 in the macaque monkey. 11. Area F5 and the control of distal movements, Exp. Brain Res. 71: 491–507.

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti, G., Gentilucci, M., Camarda, R., Gallese, V., Luppino, G., Matelli, M., and Fogassi, 1990, Neurons related to reaching-grasping arm movements in the rostral part of area 6 (area 6a(3), Exp. Brain Res. 82: 337–350.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. A., 1972, Eye movements evoked by collicular stimulation in the alert monkey, Vision Res. 12: 1795–1808.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. A., 1973, Models of the saccadic eye movement control system, Kybernetik 14: 71–83.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. A., 1986, The systems approach to the oculomotor system, Vision Res. 26: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. A., 1991, Overview, in: Eye Movements ( R. H. S. Carpenter, ed.), CRC Press, Boca Raton, FL, pp. 320–331.

    Google Scholar 

  • Robinson, D. A., and Fuchs, A. F., 1969, Eye movements evoked by stimulation of frontal eye fields, J. Neurophysiol. 32: 637–648.

    CAS  PubMed  Google Scholar 

  • Robinson, D. I.., Goldberg, M. E., and Stanton, G. B., 1978, Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations, J. Neurophysiol. 41:9I0–932.

    Google Scholar 

  • Roland, P. E., Larsen, B., Lassen, N. A., and Skinhoj, E., 1980, Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43: 118–136.

    CAS  PubMed  Google Scholar 

  • Rolls, E. T., Sanghera, M. K., and Roper-Hall, A., 1979, The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey, Brain Res. 164: 121–135.

    Article  CAS  PubMed  Google Scholar 

  • Rolls, E. T., Critchley, H. D., Mason, R., and Wakeman, E. A., 1996a, Orbitofrontal cortex neurons:

    Google Scholar 

  • Role in olfactory and visual association learning,. Neurophysiol. 75:1970—I981.

    Google Scholar 

  • Rolls, E. T., Critchley, H. D., Mason, R., and Wakeman, E. A., 1996b, Representation of olfactory information in the primate orbitofrontal cortex, J. Neurophysiol. 75: 1982–1996.

    CAS  PubMed  Google Scholar 

  • Romo, R., and Schultz, W., 1987, Neuronal activity preceding self-initiated or externally timed arm movements in area 6 of monkey cortex, Exp. Brain Res. 67: 656–662.

    Article  CAS  PubMed  Google Scholar 

  • Romo, R., and Schultz, W., 1992, Role of primate basal ganglia and frontal cortex in the internal generation of movements. Ill. Neuronal activity in the supplementary motor area, Exp. Brain Res. 91: 396–407.

    Article  CAS  PubMed  Google Scholar 

  • Rosenkilde, C. E., Bauer, R. H., and Fuster, J. M., 1981, Single cell activity in ventral prefrontal cortex of behaving monkeys, Brain Res. 209: 375–394.

    Article  CAS  PubMed  Google Scholar 

  • Rossetti, Y., Tadary, B., and Prablanc, C., 1994, Optimal contributions of head and eye positions to spatial accuracy in man tested by visually directed pointing, Exp. Brain Res. 97: 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Russchen, F. T., Amaral, D. G., and Price, J. L., 1987, The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca jitscicularis, J. Comp. Neural. 256: 175–210.

    Article  CAS  Google Scholar 

  • Russo, G. S., and Bruce, C. J., 1989, Auditory receptive fields of neurons in frontal cortex of rhesus monkey shift with direction of gaze, Soc. Neurosci. Absir. 15: 1204.

    Google Scholar 

  • Russo, G. S., and Bruce, C.,J., 1993, Effect of eye position with the orbit on electrically elicited saccadic eye movements: A comparison of the macaque monkey’s frontal and supplementary eye field, J. Neurophysiol. 69: 800–818.

    CAS  PubMed  Google Scholar 

  • Russo, G. S., and Bruce, C. J., 1994, Frontal eye field activity preceding aurally guided saccades, J. Neurophysiol. 71: 1250–1253.

    CAS  PubMed  Google Scholar 

  • Russo, G. S., and Bruce, C. J., 1996, Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system, J. Neurophysiol. 76: 825–848.

    CAS  PubMed  Google Scholar 

  • Sakagami, M., and Niki, H., 1994a, Encoding of behavioral significance of visual stimuli by primate prefrontal neurons: Relation to relevant task conditions, Exp. Brain Res. 97: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Sakagami, M., and Niki, H., 199413, Spatial selectivity of go/no-go neurons in monkey prefrontal cortex, Exp. Brain Res. 100: 165–169.

    Google Scholar 

  • Sakai, M., 1978, Single unit activity in a border area between the dorsal prefrontal and premotor regions in the visually conditioned motor task of monkeys, Brain Res. 147: 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Sakata, H., Shibutani, H., and Kawano, K., 1980, Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey, J. Neurophysiol. 43: 1654–1672.

    CAS  PubMed  Google Scholar 

  • Sakata, H., Shibutani, H., and Kawano, K., 1983, Functional properties of visual tracking neurons in posterior parietal association cortex of the monkey,, J. Neurophysiol. 49: I364–1380.

    Google Scholar 

  • Sanghera, M. K., Rolls, E. T., and Roper-Hall, A., 1979, Visual responses of neurons in the dorsolateral amygdala of the alert monkey, Exp. Neurol. 63: 610–626.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, K., and Gemba, H., 1986, Electrical activity in the prefrontal cortex specific to no-go reaction of conditioned hand movement with colour discrimination in the monkey, Exp. Brain Res. 64: 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi, T., I987a, Properties of neuronal activity related to a visual reaction time task in the monkey prefrontal cortex, J. Neurophysiol. 58: 1080–1099.

    Google Scholar 

  • Sawaguchi, “1’., 19876, Catecholamine sensitivities of neurons related to a visual reaction time task in the monkey prefrontal cortex, J. Neurophysiol. 58:1100–1122.

    Google Scholar 

  • Sawaguchi, T., and Goldman-Rakic, P. S., 1991, D1 dopamine receptors in prefrontal cortex: Involvement in working memory, Science 251: 947–950.

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi, T., Matsumura, M., and Kubot, K., 1990, Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex,/ Neurophysiol. 63: 1401–1412.

    CAS  Google Scholar 

  • Schall, J. D., 199Ia, Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys, Neurophysiol. 66: 530–558.

    Google Scholar 

  • Schall, J. D., 19916, Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: Comparison with supplementary eye fields, J. Neurophysiol. 66: 559–579.

    Google Scholar 

  • Schall, J. D., 1991c, Neuronal basis of saccadic eye movements, in: The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 388–442.

    Google Scholar 

  • Schall, J. D., 1995, Neural basis of saccade target selection, Rev. Neurosci. 6: 63–85.

    CAS  PubMed  Google Scholar 

  • Schall, J. D., and Hanes, D. P., 1993, Neural basis of saccade target selection in frontal eye field during visual search, Nature 366: 467–469.

    Article  CAS  PubMed  Google Scholar 

  • Schall, J. D., and Hanes, D. P., 1996, Neural control of saccade initiation studied with the countermanding paradigm: Frontal eye field, Soc. Neurosci. Absir. 22: 418.

    Google Scholar 

  • Schall, J. D., Morel, A., and Kaas. J. FI., 1993, Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems, Visual Neurosci. 10: 385–393.

    Article  CAS  Google Scholar 

  • Schall, J. D., Hanes, D. P., Thompson, K. G., and King, D. J., 1995a, Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation, J. Neurosci. 15: 6905–6918.

    CAS  PubMed  Google Scholar 

  • Schall, J. D., Morel, A., King, D.1., and Bullier, J., 19956, Topography of visual cortical afferents to frontal eye field in macaque: Functional convergence and segregation of processing streams,/ Neurosci. 15: 4464–4487.

    Google Scholar 

  • Schiller, P. H., and Koerner, F., 1971, Discharge characteristics of single units in superior colliculus of the alert rhesus monkey, J. Neurophysiol. 34: 920–936.

    CAS  PubMed  Google Scholar 

  • Schiller, P. H., and Sandell, J. H., 1983, Interactions between visually and electrically elicited saccades before and after superior colliculus and frontal eye field ablation in the rhesus monkey, Exp. Brain Res. 49: 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Schiller, P. H., and Stryker, M., 1972, Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey, J. Neurophysiol. 35: 915–924.

    CAS  PubMed  Google Scholar 

  • Schiller, P. H., True, S. D., and Conway, J. 1.., 1979, Paired stimulation of the frontal eye field and the superior colliculus of the rhesus monkey, Brain Res. 179: 162–164.

    CAS  Google Scholar 

  • Schiller, P. H., True, S. D., and Conway, J. D., 1980, Deficits in eye movements following frontal eye field and superior colliculus ablations, J. Neurophysiol. 44: 1175–1189.

    CAS  PubMed  Google Scholar 

  • Schiller, P. H., Sandell, J. H., and Maunsell, J. H. R., 1987, The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey, J. Neurophysiol. 57: 1033–1049.

    CAS  PubMed  Google Scholar 

  • Schlag, J., and Schlag-Rey, M., 1985, Unit activity related to spontaneous saccades in frontal dorsomedial cortex of monkey, Exp. Brain Res. 58: 208–211.

    Article  CAS  PubMed  Google Scholar 

  • Schlag, J., and Schlag-Rey, M., 1987, Evidence for a supplementary eye field, J. Neurophysiol. 57: 179–200.

    CAS  PubMed  Google Scholar 

  • Schlag, J., and Schlag-Rey, M., 1990, Colliding saccades may reveal the secret of their marching orders, TINS 13: 410–415.

    CAS  PubMed  Google Scholar 

  • Schlag, J., and Schlag-Rey, M., 1992, Neurophysiology of eye movements, Adv. Neurol. 57: 135–147.

    CAS  PubMed  Google Scholar 

  • Schlag, J., and Schlag-Rey, M., 1995, Illusory localization of stimuli flashed in the dark before saccades, Vision Res. 35: 2347–2357.

    Article  CAS  PubMed  Google Scholar 

  • Schlag, J., Schlag-Rey, M., and Pigarev, I., 1992, Supplementary eye field: Influence of eye position on neural signals of fixation, Exp. Brain Res. 90: 302–306.

    Article  CAS  PubMed  Google Scholar 

  • Schlag-Rey, M., and Schlag, J., 1984, Visuomotor functions of central thalamus in monkey. L Unit activity related to spontaneous eye movements, J. Neurophysiol. 51: 1149–1174.

    CAS  PubMed  Google Scholar 

  • Schlag-Rey, M., Schlag, J., and Shook, B., 1989, Interactions between natural and electrically evoked saccades: I. Differences between sites carrying retinal error and motor command signals in monkey superior colliculus, Exp. Brain Res. 76: 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Schlag-Rey, M., Schlag, J., and Dassonville, P., 1992, How the frontal eye field can impose a saccade goal on superior colliculus neurons,./. Neurophysiol. 67: 1003–1005.

    CAS  Google Scholar 

  • Schnyder, H., Reisine, H., Hepp, K., and Henn, V., 1985, Frontal eye field projection to the paramedian puntine reticular formation traced with wheat germ agglutinin in the monkey, Brain Res. 329: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, W., Apicella, P., and Ljungberg, T., 1993, Responses of monkey dopamine neurons 0) reward and conditioned stimuli during successive steps of learning a delayed response task, J. Neurosci. 13: 900–913.

    CAS  PubMed  Google Scholar 

  • Scudder, C. A., 1988, A new local feedback model of the saccadic burst generator, J. Neurophysiol. 59: 1455–1475.

    CAS  PubMed  Google Scholar 

  • Segraves, M. A., 1992, Activity of monkey frontal eye field neurons projecting to oculomotor regions of the puns, J. Neurophysiol. 68: 1967–1985.

    CAS  PubMed  Google Scholar 

  • Segraves, M. A., and Goldberg, M. E., 1987, Functional properties of corticotectal neurons in the monkey’s frontal eye fields, J. Neurophysiol. 58: 1387–1419.

    CAS  PubMed  Google Scholar 

  • Segraves, M. A., and Park, K., 1993, The relationship of monkey frontal eye field activity to saccade dynamics, J. Neurophysiol. 69: 1880–1889.

    CAS  PubMed  Google Scholar 

  • Seitz, R. J., and Roland, P. D., 1992, Learning of sequential finger movements in man: A combined kinematic and positron emission tomography (PET) study, Eur. J. Neurosci. 4: 154–165.

    Article  PubMed  Google Scholar 

  • Selemon, L. D., and Goldman-Rakic, P. S., 1985, Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey, J. Neurosci. 5: 776–794.

    CAS  PubMed  Google Scholar 

  • Selemon, L. D., and Goldman-Rakic, P. S., 1988, Common cortical/subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior, J. Neurosci. 8: 4049–4068.

    CAS  PubMed  Google Scholar 

  • Sereno, A. B., and Holzman, P. S., 1993, Express saccades and smooth pursuit eye movement function in schizophrenic, affective disorder and normal subjects, J. Cognitive Neurosci. 5: 303–316.

    Article  Google Scholar 

  • Sharpe, J. A., 1986, Adaptation to frontal lobe lesions, in: Adaptive Processes in Visual and Oculomotor Systems (E. L. Keller and I). S. Zee, eds.), Pergamon Press, New York, pp. 239–246.

    Google Scholar 

  • Sherrington, C. S., 1893, Further experimental note on the correlation of action of antagonistic muscles, Proc. R. Soc. Land. 53: 407–420.

    Article  Google Scholar 

  • Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura, Y., Honda, M., Nagamine, T., Suwazono, S., Magata, Y., Ikeda, A., and Miyazaki, M., 1993, Both primary motor cortex and supplementary motor area play an important role in complex finger movement, Brain 116: 1387–1398.

    Article  PubMed  Google Scholar 

  • Shima, K., Aya, K., Mushiake, H., Inase, M., Aisawa, H., and lanji, J., 1990, Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements,/ Neurophysiol. (Paris) 65: 188–202.

    Google Scholar 

  • Shook, B. L., Schlag-Ray, M., and Schlag, J., 1990, Primate supplementary eye field. I. Comparative aspects of mesencephalic and pontine connections, J. Comp. Neural. 301: 618–642.

    Article  CAS  Google Scholar 

  • Shook, B. L., Schlag-Ray, M., and Schlag, J., 1991, Primate supplementary eye field. 11. Comparative aspects of connections with the thalamus, corpus striatum and related forebrain nuclei,./. Comp. Neural. 307: 562–583.

    Article  CAS  Google Scholar 

  • Siegel, B. V., Buchsbaum, M. S., Bunney, W. E., Jr., Gottschalk, L. A., Haler, R. J., Lohr, J. B., Lattenberg, S., Najafi, A., Neuchterlein, K. H., and Potkin, S. G., 1993, Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients, Am. J. Psychiatry 150: 1325–1336.

    PubMed  Google Scholar 

  • Smith, W. K., 1936, Ocular responses elicited by electrical stimulation of the cerebral cortex, Anal. Rec. 64: 45.

    Google Scholar 

  • Smith, W. K., 1940, Electrically responsive cortex within the sulci of the frontal lobe, Anal. Rec. 76: 75–76.

    Google Scholar 

  • Soechting, J. F., and Flanders, M., 1992, Moving in three-dimensional space: frames of reference, vectors and coordinate systems, Annu. Rev. Neurosci. 15: 167–191.

    Article  CAS  Google Scholar 

  • Sparks, D. L., and Hartwich-Young, R., 1989, The deep layers of the superior colliculus, in: The Neurobiology of Saccadic Eye Movements ( R. H. Wurtz and M. E. Goldberg, eds.), Elsevier, Amsterdam, pp. 213–255.

    Google Scholar 

  • Sparks, D. L., and Mays, L. E., 1983, Spatial localization of saccade targets. I. Compensation for stimulation-induced perturbations in eye position,/ Neurophysiol. 49: 45–63.

    CAS  Google Scholar 

  • Sparks, I). L., Mays, L. E., and Porter, J. D., 1987, Eye movements induced by pontine stimulation: Interaction with visually triggered saccades,/ Neurophysiol. 58: 300–318.

    Google Scholar 

  • Sperry, R. W., 1950, Neural basis of the spontaneous optokinetic response produced by visual inversion, f. Comp. Physiol. Psychol. 43: 482–489.

    Article  CAS  Google Scholar 

  • Stanford, T. R., Carney, L. H., and Sparks, I). L., 1990, The amplitude of visually guided saccades is specified gradually in humans, Soc. Neurosci. Abstr. 16: 901.

    Google Scholar 

  • Stanton, G. B., Goldberg, M. E., and Bruce, C. J., 1988a, Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields, j. Comp. Neural. 271: 473–492.

    Article  CAS  Google Scholar 

  • Stanton, G. B., Goldberg, M. E., and Bruce, C. J., 1988b, Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons, f. Comp. Neurol. 271: 493–506.

    Article  CAS  Google Scholar 

  • Stanton, G. B., Deng, S.-Y., Goldberg, M. E., and McMullen, N. T., 1989, Cytoarchitectural characteristics of the frontal eye fields in macaque monkeys,/ Comp. Neurol. 282: 415–427.

    Article  CAS  Google Scholar 

  • Stanton, G. B., Bruce, C. J., and Goldberg, M. E., 1993, Topography of projections to the frontal lobe from the macaque frontal eye fields,/ Comp. Neural. 330: 286–301.

    Article  CAS  Google Scholar 

  • Stanton, G. B., Bruce, C. J., and Goldberg, M. E., 1995, Topography of projections to posterior cortical areas from the macaque frontal eye fields, J. Comp. Neurol. 353: 291–305.

    Article  CAS  PubMed  Google Scholar 

  • Steinbach, M. J., 1987, Proprioceptive knowledge of eye position, Vision Res. 27: 1737–1744.

    Article  CAS  PubMed  Google Scholar 

  • Steinman, R. M., 1986, ‘Fhe need for an eclectic, rather than systems, approach to the study of the primate oculonotor system, Vision Res. 26: 101–112.

    Google Scholar 

  • Stephan, K. M., Fink, G. R., Passingham, R. E., Silbersweig, D., Ceballos-Baumann, A. O., Frith, C. D., Frackowiak, R. S., 1995, Functional anatomy of the mental representation of upper extremity movements in healthy subjects,/ Neurophysiol. 73: 373–386.

    CAS  Google Scholar 

  • Stepniewska, I., Preuss, ‘F. M., and Kaas, J. H., 1993, Architectonics, somatotopic organization and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys,/ Comp. Neural. 330: 238–271.

    CAS  Google Scholar 

  • Sternberg, S., 1969, ‘Fhe discovery of processing stages: Extensions of Donders’ method, in W. G. Koster, ed., Attention and Performance 11, Acta Psychol. 30:276–315.

    Google Scholar 

  • Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.

    Book  Google Scholar 

  • Stuss, D. ‘F., and Benson, D. F., 1986, The Frontal Lobes, Raven Press, New York.

    Google Scholar 

  • Suzuki, H., 1985, Distribution and organization of visual and auditory neurons in the monkey prefrontal cortex, Vision Res. 25: 465–469.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H., and Azuma, M., 1977, Prefrontal neuronal activity during gazing at a light spot in the monkey, Brain Res. 126: 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H., and Azuma, M., 1983, Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey, Exp. Brain Res. 53: 47–58.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H., Azuma, M., and Yumiya, H., 1979, Stimulus and behavioral factors contributing to the activation of monkey prefrontal neurons during gazing, Jpn. J. Physiol. 29: 471–490.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney, J. A., Miutun, M. A., Kwee, S., Wiseman, M. B., Brown, D. L., Rosenberg, D. R., and Carl, J. R., 1995, A positron emission tomography study of voluntary saccadic eye movements and spatial working memory, J. Neurophysiol. 75: 454–468.

    Google Scholar 

  • Tanabe, ‘F., Yarita, 1 f., lino, M., Ooshima, Y., and Takagi, S. R., 1975, An olfactory projection area in the orbitofrontal cortex of the monkey, J. Neurophysiol. 38: 1269–1283.

    CAS  Google Scholar 

  • Tanji, J., 1994, The supplementary motor area in the cerebral cortex, Neurosci. Res. 19: 251–268.

    Article  CAS  PubMed  Google Scholar 

  • Tanji, J., and Evarts, E. V., 1976, Anticipatory activity of motor cortex neurons in relation to direction of an intended movement,/ Neurophysiol. 39: 1062–1068.

    CAS  Google Scholar 

  • Tanji, J., and Kurata, K., 1979, Neuronal activity in the cortical supplementary motor area related with distal and proximal forelimb movements, Neurosci. Lett. 12: 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Tanji, J., and Kurata, K., 1981, Contrasting neuronal activity in the ipsilateral and contralateral supplementary motor areas in relation to a movement of monkey’s distal hindlimb, Brain Res. 222: 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Tanji, J., and Kurata, K., 1982, Comparison of movement-related activity in two cortical motor areas of primates, J. Neurophysiol. 48: 633–653.

    CAS  PubMed  Google Scholar 

  • Tanji, J., and Kurata, K., 1985, Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to Iòrthcoming signals of different modalities, J. Neurophysiol. 53: 129–141.

    CAS  PubMed  Google Scholar 

  • Tanji, J., and Shima, K., 1994, Role for supplementary motor area cells in planning several movements ahead, Nature 371: 413–416.

    Article  CAS  PubMed  Google Scholar 

  • Tanji, J., Okano, K., and Sato, K. C., 1988, Neuronal activity in cortical motor areas related to ipsilateral, contralateral and bilateral digit movements of the monkey, J. Neurosphysiol. 60: 325–343.

    CAS  Google Scholar 

  • Tanji, J., Taniguchi, K., and Saga, T., 1980, Supplementary motor area: Neuronal response to motor instructions, J. Neurophysiol. 43: 60–68.

    CAS  PubMed  Google Scholar 

  • Taylor, D. A., 1976, Stage analysis of reaction time, Psychol. Bull. 83: 161–191.

    Article  CAS  PubMed  Google Scholar 

  • Tehovnik, E. J., 1995, The dorsomedial frontal cortex: Eye and forelimb fields, Behay. Brain Res. 67: 147–163.

    Article  CAS  Google Scholar 

  • Tehovnik, E. J., and Lee, K., 1993, The dorsomedial frontal cortex of the rhesus monkey: “Topographic representation of saccades evoked by electrical stimulation, Exp. Brain Res. 96: 430–442.

    Google Scholar 

  • Tehovnik, E.J., Lee, K., and Schiller, P. H., 1994, Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus, Exp. Brain Res. 98: 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Teuber, H.-L., Battersby, W. S., and Bender, M. B., 1949, Changes in visual searching performance following cerebral lesions, Am. J. Physiol. 159: 592.

    Google Scholar 

  • Thaler, D. E., Rolls, E. T., and Passingham, R. E., 1988, Neuronal activity of the supplementary motor area (SMA) during internally and externally triggered wrist movements, Neurosci. Lett. 93: 264–269.

    Article  CAS  PubMed  Google Scholar 

  • Thaler, D. E., (:hen, Y.-C., Nixon, P. D., Stern, C. E., and Passingham, R. E., 1995, The functions of the medial premotor cortex I. Simple learned movements, Exp. Brain Res. 102: 445–460.

    Google Scholar 

  • Thickbroom, G. W., and Mastaglia, F. L., 1990, Premotor negativity associated with saccadic eye movement and finger movement: A comparative study, Brain Res. 506: 223–226.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, K. G., Hanes, D. P., and Schall, J. D., 1995, Time-course of target selection in macaque frontal eye field during visual search, Soc. Neurosci. Abstr. 21: 1270.

    Google Scholar 

  • Thompson, K. G., Hanes, D. P., Bichot, N. P., and Schall, J. D., 1996, Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search, J. Neurophysiol. 76: 4040–4055.

    Google Scholar 

  • Thorpe, S. J., Rolls, E. “F., and Maddison, S., 1983, ”The orbitofrontal cortex: Neuronal activity in the behaving monkey, Exp. Brain Res. 49: 93–115.

    Google Scholar 

  • Tomlinson, R. D., and Bahra, P. S., 1986, Combined eye—head gaze shifts in the primate. I. Metrics, J. Neurophysiol. 56: 1542–1557.

    CAS  PubMed  Google Scholar 

  • Umeno, M. M., and Goldberg, M. E., 1994, Predictive visual responses in monkey frontal eye field, Soc. Neurosci. Abstr. 20: 144.

    Google Scholar 

  • Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in Analysis of Visual Behavior (D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, pp. 549–586.

    Google Scholar 

  • Ungerleider, L. G., Gaffan, D., and Pelak, V. S., 1989, Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys, Exp. Brain Res. 76: 473–484.

    Article  CAS  PubMed  Google Scholar 

  • Vaadia, E., 1989, Single-unit activity related to active localization of acoustic and visual stimuli in the frontal cortex of the rhesus monkey, Brain Behay. Evol. 33: 127–131.

    Article  CAS  Google Scholar 

  • Vaadia, E., Benson, D. A., Heinz, R. D., and Goldstein, M. H., 1986, Unit activity of monkey frontal cortex: Active localization of auditory and visual cues, J. Neurophysiol. 56: 934–957.

    CAS  PubMed  Google Scholar 

  • Van Gisbergen, J. A. M., Van Opstal, A. J., and Tax, A. A. M., 1987, Collicular ensemble coding of saccades based on vector summation, Neuroscience 21: 541–555.

    Article  PubMed  Google Scholar 

  • Van Opstal, A. J., and Van Gisbergen, J. A. M., 1989, A nonlinear model for collicular spatial interactions underlying the metrical properties of electrically elicited saccades, Biol. Cybernet. 60: 171–183.

    Article  Google Scholar 

  • Vercher, J.-L., and Gauthier, G. M., 1992, Oculo-manual coordination control: Ocular and manual tracking of visual targets with delayed visual feedback of the hand motion, Exp. Brain Res. 90: 599–609.

    Article  CAS  PubMed  Google Scholar 

  • Viviani, P., 1990, Eye movements in visual search: Cognitive, perceptual and motor control aspects, in: Eye Movements and Their Role in Visual and Cognitive Processes ( E. Kowler, ed.), Elsevier, Amsterdam, pp. 353–393.

    Google Scholar 

  • Vogels, R., and Urban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.

    CAS  PubMed  Google Scholar 

  • Vogt, B. A., 1985, Cingulate Cortex, in: Cerebral Cortex, Volume 4, Association and Auditory Cortices ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 89–149.

    Google Scholar 

  • Vogt, B. A., and Pandya, D. N., 1987, Cingulate cortex of the rhesus monkey. II. Cortical afferents, /. Comp. Neurol. 262: 271–289.

    Article  CAS  Google Scholar 

  • Vogt, B. A., Pandya, D. N., and Rosene, D. C., 1987, Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents, J. Comp. Neurol. 262: 256–270.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, B. A., Finch, D. M., and Olson, C. R., 1992, Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions, Cerebral Cortex 2: 435–443.

    CAS  PubMed  Google Scholar 

  • Vogt, C., and Vogt, O., 1907, Zur Kenntnis der elektrisch erregbaren Hirnrinden-Gebiete bei den Säugetieren,J. Psychol. Neurol. (Lpz.) 8: 277–456.

    Google Scholar 

  • Vogt, C., and Vogt, O., 1919, Allgemeine Ergebnisse unserer Hirnforschung. Vierte Mitteilung: Die physiologische Bedeutung der architektonischen Rindenfelderung auf Grund neuer Rindenreizungen, J. Psychol. Neural. (Lpz.) 25: 399–462.

    Google Scholar 

  • Volkmann, F. C., Schick, A. M. L., and Riggs, L. A., 1968, The time course of visual inhibition during voluntary saccades, /. Opt. Soc. Am. 58: 562–569.

    Article  CAS  Google Scholar 

  • Volkmann, F. C., Riggs, L. A., White, K. D., and Moore, R. K., 1978, Contrast sensitivity during saccadic eye movements, Vision Res. 18: 1193–1199.

    Article  CAS  PubMed  Google Scholar 

  • von Bonin, G., and Bailey, P., 1947, The Neocortex of Macaca Mulatta, University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Von Holst, E., and Mittelstaedt, FI., 1950, The principle of reafference: Interactions between the central nervous system and the peripheral organs, Die Naturwissenschaften 37:464–474 [English translation in: Dodwell, P. C., 1980, Perceptual Processing: Stimulus Equivalence and Pattern Recognition, Appleton-Century-Crofts, New York, pp. 41–71].

    Google Scholar 

  • Wagman, I. H., Krieger, H. P., and Bender, M. B., 1958, Eye movements elicited by surface and depth stimulation of the occipital lobe of Macaque mulatta, J. Comp. Neurol. 109: 169–193.

    Article  CAS  Google Scholar 

  • Wagman, I. H., Krieger, H. P., Papatheodoron, C. A., and Bender, M. B., 1961, Eye movements elicited by surface and depth stimulation of the frontal lobe, J. Comp. Neurol. 117: 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Walker, A. E., 1940, A cytoarchitectural study of prefrontal area of the macaque monkey, J. Comp. Neurol. 73: 59–86.

    Article  Google Scholar 

  • Walker, A. E., and Weaver, T. A., 1940, Ocular movements from the occipital lobe in the monkey,/ Neurophysiol. 3: 353–369.

    Google Scholar 

  • Watanabe, M., 1981, Prefrontal unit activity during delayed conditional discriminations in the monkey, Brain Res. 225: 51–65.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., 1986a, Prefrontal unit activity during delayed conditional Go/No-Go discrimination in the monkey. I. Relation to the stimulus, Brain Res. 382: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., 1986b, Prefrontal unit activity during delayed conditional Go/No-Go discrimination in the monkey. II. Relation to Go and No-Go responses, Brain Res. 382: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., 1990, Prefrontal unit activity during associative learning in the monkey, Exp. Brain Res. 80: 296–309.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, M., 1992, Frontal units of the monkey coding the associative significance of visual and auditory stimuli, Exp. Brain Res. 89: 233–247.

    Article  CAS  PubMed  Google Scholar 

  • Watson, R. T., Fleet, W. S., Gonzalez-Rothi, L., Heilman, K. M., 1986, Apraxia and the supplementary motor area, Arch. Neurol. 43: 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1994, Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys, Cerebral Cortex 4: 470–483.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, N. M., 1995, Dynamic regulation of receptive fields and maps in the adult sensory cortex, Ann. Rev. Neurosci. 18: 129–158.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, D. R., Berman, K. F., and Zec, R. F., 1986, Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence, Arch. Gen. Psychiatry 43: 114–125.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger, D. R., and Berman, K. F., 1996, Prefrontal function in schizophrenia: Confounds and controversies, Phil. Trans. R. Soc. Loud. B 351: 1495–1503.

    Article  CAS  Google Scholar 

  • Weinrich, M., and Wise, S. P., 1982, The premotor cortex of the monkey, J. Neurosci. 2: 1329–1345.

    CAS  PubMed  Google Scholar 

  • Weinrich, M., Wise, S. P., and Mauritz, K. H., 1984, A neurophysiological study of the premotor cortex in rhesus monkey, Brain 107: 385–414.

    Article  PubMed  Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1987, Subdivisions and connections of inferior temporal cortex in owl monkeys, J. Comp. Neural. 256: 137–172.

    Article  CAS  Google Scholar 

  • Wessel, K., Zeffiro, T., Lou, J. S., Toro, C., and Hallett, M., 1995, Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration, Brain 118: 379–393.

    Article  PubMed  Google Scholar 

  • Wiesendanger, M., and Wise, S. P., 1992, Current issues concerning the functional organization of motor cortical areas in nonhuman primates, in: Frontal Lobe Seizures and Epilepsy ( P. Chauvel, A. V. Delgado-Escuerta, E. Halgren, and J. Bancaud, eds.), Raven Press, New York, pp. 117–134.

    Google Scholar 

  • Williams, S. M., and Goldman-Rakic, P. S., 1993, Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody, Cerebral Cortex 3: 199–222.

    Article  CAS  PubMed  Google Scholar 

  • Williams, G. V., and Goldman-Rakic, P. S., 1995, Modulation of memory fields by dopamine D1 receptors in prefrontal cortex, Nature 376: 572–575.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, F. A. W., Ó Scalaidhe, S. P., and Goldman-Rakic, P. S., 1993, Dissociation of object and spatial processing domains in primate prefrontal cortex, Science 260: 1955–1958.

    Article  CAS  PubMed  Google Scholar 

  • Wise, S. P., 1985, The primate premotor cortex: Past, present and preparatory, Annu. Rev. Neurosci. 8: 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Wise, S. P., and Kurata, K., 1989, Set-related activity in the premotor cortex of rhesus monkeys: Effect of triggering cues and relatively long delay intervals, Somatosens. Motor Res. 6: 455–476.

    CAS  Google Scholar 

  • Wise, S. P., and Mauritz, K.-H., 1985, Set-related neuronal activity in the premotor cortex of rhesus monkeys: Effects of changes in motor set, Proc. R. Soc. Gond. B 223: 331–354.

    Article  CAS  Google Scholar 

  • Wise, S. P., and Tanji, J., 1981, Supplementary and precentral motor cortex: Contrast in responsiveness to peripheral input in the hindlimb area of the unanesthetized monkey, J. Comp. Neural. 195: 433–451.

    Article  CAS  Google Scholar 

  • Wise, S. P., Weinrich, M., and Mauritz, K.-H., 1986, Movement-related activity in the premotor cortex of rhesus macaques, in: Progress in Brain Research, Volume 64 ( H.-J. Freund, U. Büttner, B. Cohen, and J. Noth, eds.), Elsevier, New York, pp. 117–131.

    Google Scholar 

  • Wolkin, A., Sanfilipo, M., Wolf, A. P., Angrist, B., Brodie, J. D., and Rotrosen,]., 1992, Negative symptoms and hypofrontality in chronic schizophrenia, Arch. Gen. Psychiatry 49: 959–965.

    Article  CAS  PubMed  Google Scholar 

  • Wurtz, R. H., and Mohler, C. W., 1976, Enhancement of visual response in monkey striate cortex and frontal eye fields,/ Neurophysiol. 39: 766–772.

    CAS  Google Scholar 

  • Yajeya, J., Quintana, J., and Fuster, J. M., 1988, Prefrontal representation of stimulus attributes during delay tasks. 11. The role of behavioral significance, Brain Res. 474: 222–230.

    Article  CAS  PubMed  Google Scholar 

  • Yarbus, A. L., 1967, Eye Movements and Vision, Plenum Press, New York.

    Google Scholar 

  • Yarita, H., lino, M., Tanabe, T., Kogure, S., and Takagi, S. F., 1980, A transthalamic olfactory pathway to orbitofrontal cortex in the monkey, f. Neurophysiol. 43: 69–85.

    CAS  Google Scholar 

  • Young, L., and Stark, L., 1963, A discrete model for eye tracking movements, IEEE Trans. Military Elect. MIL-7: 113–115.

    Google Scholar 

  • Zambarbieri, D., Schmid, R., Magenes, G., and Prablanc, C., 1982, Saccadic responses evoked by presentation of visual and auditory targets, Exp. Brain Res. 47: 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Zangemeister, W. M., and Stark, L., 1982, Gaze latency: Variable interactions of head and eye latency, Exp. Neural. 75: 389–406.

    Article  CAS  Google Scholar 

  • Zatorre, R. J., Evans, A. C., Meyer, E., and Gjedde, A., 1992, Lateralization of phonetic and pitch discrimination in speech processing, Science 256: 846–849.

    Article  CAS  PubMed  Google Scholar 

  • Zingale, C. M., and Kowler, E., 1987, Planning sequences of saccades, Vision Res. 27: 1327–1341.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schall, J.D. (1997). Visuomotor Areas of the Frontal Lobe. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics