Skip to main content

Leukodiapedesis, Function, and Physiological Role of Leucocyte Matrix Metalloproteinases

  • Chapter
Cellular Peptidases in Immune Functions and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 421))

Abstract

Any inflammatory process is accompanied by the invasion of polymorphonuclear neutrophils (PMN) which emigrate from the vascular bed through the blood capillary walls into the surrounding tissue towards the site of inflammation (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. J. Williams and P. G. Hellewell, Endothelial cell biology. Adhesion molecules involved in the microvascular inflammatory response, Am. Rev. Respir. Dis. 146, 45–50 (1992)

    Article  Google Scholar 

  2. M. P. Bevilacqua and R. M. Nelson, Selectins, J. Clin. Invest. 91, 379–387 (1993)

    Article  PubMed  CAS  Google Scholar 

  3. E. C. Butcher, Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity, Cell 67, 1033–1036(1991)

    Google Scholar 

  4. R. Pardi, L. Inverardi, and J. R. Bender, Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers, Immunol. Today 13, 224 (1993)

    Article  Google Scholar 

  5. T. M. Carlos and J. M. Harlan, Leukocyte-endothelial adhesion molecules, Blood 84, 2068–2101 (1994)

    PubMed  CAS  Google Scholar 

  6. B. Bakowski and H. Tschesche, Migration of polymorphonuclear leukocytes through human amnion membrane–A scanning electron microscopic study Biol. Chem. Hoppe-Seyler 373, 529–546 (1992)

    PubMed  CAS  Google Scholar 

  7. I. I. Singer, S. Scott, D. W. Kawda, D. M. Kazazis, Adhesomes: Specific granules containing receptors for laminin, C3bi/fibrinogen, fibrinectin, and vitronectin in human polymorphonuclear leucocytes and monocytes, J. Cell Biol. 109, 3169–3182 (1989)

    Article  PubMed  CAS  Google Scholar 

  8. R. Snyderman and R. J. Uhing, Phagocytic cells: stimulus-response coupling mechanisms, in: Inflammation: Basic Principles and Clinical Correlates, 309–332 ( J. I. Gallin, I. M. Goldstein, and R. Snyderman, eds.), Raven Press, New York (1988)

    Google Scholar 

  9. H. Tschesche. A. Schettler, H Thorn, B. Bakowski, V. Knäuper, H. Reinke, and B. M. Jockusch, Chemotaxis, proteinase secretion and activation of collagenase of PMN leucocytes in: Proteinases and Their Inhibitors - Recent Developments, Proceedings of the 8th Winter School, (E. Auerswald, H. Fritz, V. Turk, eds.) 31–36, KFA Jülich GmbH, (1989)

    Google Scholar 

  10. A. Schettler, H. Thorn, B. M. Jockusch, and H. Tschesche, Release of proteinases from stimulated polymorphonuclear leukocytes: Evidence for subclasses of the main granule types and their association with cytoskeletal components, Eur. J. Biochem. 197, 197–202 (1991)

    Article  PubMed  CAS  Google Scholar 

  11. D. G. Wright and J. I. Gallin, Secretory responses of human neutrophils: Exocytosis of specific (secondary) granules of human neutrophils during adherence in vitro and during exudation in vivo, J. Immunol. 123, 285–294 (1979)

    Google Scholar 

  12. M. C. M. Vissers, C. C. Winterbourn, and J. S. Hunt, Degradation of glomerular basement membrane by human neutrophils in vitro, Biochem. Biophy.s. Acta, 804, I54–160 (1984)

    Google Scholar 

  13. V.-J. Uitto, D. Schwartz, and A Veis, Degradation of basement-membrane collagen by neutral proteases from human leukocytes, Eur. J. Biochem. 105, 409–417 (1980)

    Article  PubMed  CAS  Google Scholar 

  14. R. A. D. Bunning, G. Murphy. S. Kumar, P. Phillips, and J. J. Reynolds, Metalloproteinase inhibitors from bovine cartilage and body fluids, Eur.1. Biochem. 139, 75–80 (1984)

    Article  CAS  Google Scholar 

  15. Y. A. De Clerck, T.-D. Yean, B. J. Ratzkin, H. S. Lu, and K. E. Langley, Purification and characterization of two related but distinct metallo-proteinase inhibitors secreted by bovine aortic endothelial cells, J. Bio! Chem. 264, 17445–1 7453, (1989)

    Google Scholar 

  16. G. I. Goldberg, B. L. Manner, G. A. Grant, A. Z. Eisen, and S. Wilhelm, Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2, Proc. Vail. Acad. Sci. USA 86, 8207–8211 (1989)

    Article  CAS  Google Scholar 

  17. W. G. Stetler-Stevenson, H. C. Krutzsch, and L. A. Liotta, Tissue Inhibitor of Metalloproteinase (TIMP-2), J. Biol. Chen. 264, 17374–17378 (1989)

    CAS  Google Scholar 

  18. E. J. Campbell and M. A. Campbell, Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: Effects of substrate opsonizatìon, J. Cell Biol. 106, 667–676 (1988)

    Article  PubMed  CAS  Google Scholar 

  19. A. F. Brown, Neutrophil granulocytes: Adhesion and locomotion on collagen substrata and in collagen matrices, J. Cell Sci. 58, 455. 467 (1982)

    Google Scholar 

  20. H. Tschesche, Human neutrophil collagenase in: Methods in Enzymology, 248, (A.J.Barrett, ed.), 431–449, Academic Press, San Diego (1995)

    Google Scholar 

  21. G. Murphy and T. Crabbe, Gelatinases A and B, Methods in Enzvmol. 248, 470–484 (1995)

    Article  CAS  Google Scholar 

  22. H. Tschesche, C. Kopp, W. H. Hörl, and U. Hempelmann, Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment, J. Biol.Chem. 269, 30274–30280 (1994)

    PubMed  CAS  Google Scholar 

  23. N. Balke, U. Holtkamp, W.H. Hörl, and H. Tschesche, Inhibition of degranulation of human polymorphonuclear leukocytes by complement factor D, FEBS Lett. 371, 300–302 (1995)

    Article  PubMed  CAS  Google Scholar 

  24. H. Tschesche, V. Knäuper, S. Krämer, J. Michaelis, R. Oberhoff, and H. Reinke, Latent collagenase and gelatinase from human neutrophils and their activation, in: MATRIX Supplement 1, 245–255 ( H. BirkedalHansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav-Fischer Verlag, Stuttgart, New York, (1992)

    Google Scholar 

  25. G. Murphy, R. Ward, J. Gavrilovic, and S. Atkinson, Physiological mechanisms for metalloproteinase activation, in: MATRIX Supplement 1, 224–230 ( H. Birkedal-Hansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav Fischer Verlag, Stuttgart, New York (1992)

    Google Scholar 

  26. H. Nagase, K. Suzuki, T. Morodomi, J. J. Enghild, and G. Salvesen, Activation Mechanisms of the precursors of matrix metalloproteinases 1,2 and 3, in: MATRIX Supplement 1, 237–244 ( H. Birkedal-Hansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav Fischer Verlag, Stuttgart, New York (1992)

    Google Scholar 

  27. E. B. Springman, E. L. Angleton, H. Birkedal-Hansen, and H. E. van Wart, Biochemical basis for multiple modes of activation of human fibroblast collagenase, in: MATRIX Supplement 1, 76–77(H. Birkedal-Hansen, Z. Werb, H. Welgus and H. Van Wart eds.), Gustav Fischer Verlag, Stuttgart, New York (1992)

    Google Scholar 

  28. S. J. Weiss, G. Peppin, X. Ortiz, C. Ragsdale, and S. T. Test, Oxidative activation of latent collagenase by human neutrophils, Science 227, 747–749 (1985)

    Article  PubMed  CAS  Google Scholar 

  29. E. B. Springman, E. L. Angleton, H. Birkendal-Hansen, and H. E. Van Wart, Multiple modes of activation of latent human fibroblast collagenase: Evidence for a role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation, Proc. Natl. Acad Sci. USA 87, 364–368 (1990)

    Article  PubMed  CAS  Google Scholar 

  30. W. Bode, P. Reinemer, R. Huber, T. Kleine, S. Schnierer, and H. Tschesche, The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity, EMBO J. 6, 1263–1269 (1994)

    Google Scholar 

  31. P. Reinemer, F. Grams, R. Huber, T. Kleine, S. Schnierer, M. Pieper, H. Tschesche, and W. Bode, Structural implications for the role of the N-terminus in the “superactivation” of collagenases. A crystallographic study, FEBS Lett. 338, 227–233 (1994)

    Article  PubMed  CAS  Google Scholar 

  32. V. Knäuper, S. Krämer, H. Reinke, and H. Tschesche, Characterization and activation of procollagenase from human polymorphonuclear leucocytes–N-terminal sequence determination of the proenzyme and various proteolytically activated forms, Eur. J. Biochem. 189, 295–300 (1990)

    Article  PubMed  Google Scholar 

  33. J. M. Clark and T. E. Cawston,Fragments of human fibroblast collagenase purification and characterization, Biochem. J. 263, 201–206 (1989)

    PubMed  CAS  Google Scholar 

  34. V. Knäuper, S. M. Wilhelm, P.K. Seperack, Y. A. DeClerck, K. E. Langley,A. Osthues, and H. Tschesche. Direct activation of human neutrophil procollagenase by recombinant stromelysin, Biochem. J. 295. 581–586(1993)

    Google Scholar 

  35. S. Schnierer, T. Kleine, T. Gote, A. Hillemann, V. Knäuper, and H. Tschesche, The recombinant catalytic domain of human neutrophil collagenase lacks type I collagen substrate specificity, Biochern. Bïaphrs. Res. Comm. 191, 319–326 (1993)

    Article  CAS  Google Scholar 

  36. E. J. Miller, E. D. Harris, Jr., E. Chung. D. E. Finch, Jr., P. A. McCroskery, and W. T. Butler, Cleavage of type Il and HI colagens with mammalian collagenase: Site of cleavage and primary structure at the NH,-terminal portion of the smaller fragment released from both collagens, Biochemistry 15, 787 (1976)

    Article  PubMed  CAS  Google Scholar 

  37. A. J. Fosang, K. Last, P. J. Neame, G. Murphy, V. Knäuper, H. Tschessche, C. E. Hughes, B. Caterson, and T. E. Hardingam. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373–A374 in the inter-globular domain of cartilage aggrecan, Biochem. J. 304, 347–351 (1994)

    PubMed  CAS  Google Scholar 

  38. V. Knäuper, H. Reinke and H. Tschesche,lnactivation of Human Plasma l-Proteinase Inhibitor by Human PMN Leucocyte Collagenase, FEBS Lett. 263, 355–357 (1990)

    Google Scholar 

  39. V. Knäuper, S. Triebel, H. Reinke and H. Tschesche,lnactivation of human plasma Cl-inhibitor by human PMN leucocyte matrix metalloproteinases, FEBS Lett. 290 99–102 !;1991)

    Google Scholar 

  40. O. Diekmann and H. Tschesche, Degradation of kinins, angiotensins and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9, Braz. J. Med. Biol. Res. 27, 1877–1883 (1994)

    Google Scholar 

  41. I. Walter, I. Wölker and W. Kuhn, Serum collagenase levels during pregnancy and parturition. R. Osmers, M. A. Pflanz, W. Rath, M. Szeverényi, V. Süwer, H. Tschesche, EurJ. Obstet. Gvnecol. Reprod. Biot 53, 55–57 (1994)

    Google Scholar 

  42. R. G. W. Osmers, B. C. Adelmann-Grill, W. Rath, H. W. Stuhlsatz, H. Tschesche, and W. Kuhn, Biochemical events in cervical ripening dilatation during pregnancy and parturition, J. Obstet. Gynaecol. 21, 185–194 (1996)

    Google Scholar 

  43. R. Osmers, H. Tschesche, J. Bläser, Th. Cunze, B. Lefhalm, and W. Kuhn, Bedeutung von I1–1 und II-8 während der Geburt, 110. Congress Norddeutsche Gesellschafi für Gynäkologie und Gehurtshiije,Abstract No. 89 142–143 (1995)

    Google Scholar 

  44. M. Takagi, Y. Konttinen, P. Kemppinen, T. Sorsa, H. Tschesche, J. Bläser. A. Suda, and S. Santavirta. Tissue inhibitor of metalloproteinase (TIMP)- 1 and collagenolytic and gelatinolytic potential in loose THR endoprostheses, J. Rheumatot. 22, 2285–2290, (1995)

    CAS  Google Scholar 

  45. T. Sorsa, Y.-L. Ding, T. Ingman, T. Salo, U. Westerlund, M. Haapasalo, H. Tschesche, and Y.T. Konttinen, Cellular source, activation and inhibition of dental plaque collagenase, J. Clin. Periodontol 22, 709 717 (1995)

    Google Scholar 

  46. H. Tschesche, B. Bakowski, A. Schettler, V. Knäuper, and H. Reinke, Leukodiapedesis, release of PMN leucocyte proteinases and activation of PMNL procollagenase, Biomed. Biochim. Acta 50, 755–761 (1991)

    PubMed  CAS  Google Scholar 

  47. L. A. Liotta, U. P. Thorgeirsson, and S. Garbisa, Role of collagenases in tumor cell invasion. Cancer Metastasis Rev. 1, 277–288 (1982)

    Article  PubMed  CAS  Google Scholar 

  48. W. G. Stetler-Stevenson, Type IV collagenases in tumour invasion and metastasis, Rev. 9, 289–303 (1990)

    CAS  Google Scholar 

  49. H. Sato, T. Takino, Y. Okada, J. Cao, A. Shinagawa, E. Yamamoto, and M. Seiki, A matrix metalloproteinase expressed on the surface of invasive tumour cells, Nature 370, 61–65 (1994)

    Article  PubMed  CAS  Google Scholar 

  50. A. Y. Strongin, I. Collier, G. Bannikov, B. L. Marmer, G. A. Grant, and G I. Goldberg, Mechanism of cell surface activation of 72-kDa type IV collagenase, J. Biol. Chem. 270, 5331–5338 (1995)

    Article  PubMed  CAS  Google Scholar 

  51. H. Sato and M. Seiki, Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis, J. Biochem. 119, 209–215 (1996)

    Article  PubMed  CAS  Google Scholar 

  52. R. V. Ward, S. J. Atkinson, J. J. Reynolds, and G. Murphy, Cell surface-mediated activation of progelatinase A: Demonstration of the involvement of the C-terminal domain of progelatinase A in cell surface binding and activation of progelatinase A by primary fibroblasts, Biochem J. 304, 263–269 (1994)

    PubMed  CAS  Google Scholar 

  53. H. Will, S. J. Atkinson, G. S. Butler, B. Smith, and G. Murphy, The soluble catalytic domain of membrane type I matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates äutoproteolytic activation, J. Biol. Chem. 271, 17119–17123 (1996)

    Article  PubMed  CAS  Google Scholar 

  54. A. Lichte, H. Kolkenbrock, and H. Tschesche, The recombinant catalytic domain of membrane-type matrix metalloproteinase-1 (MT-MMP) induces activation of progelatinase A and progelatinase A complexed with TIMP-2, FEBS Lett. 397, 277–282 (1996)

    Article  PubMed  CAS  Google Scholar 

  55. X. S. Puente, A. M. Pendäs, E. Llano, G. Velasco, and C. López-Otin, Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma, Cancer Research 56, 944–949 (1996)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tschesche, H. (1997). Leukodiapedesis, Function, and Physiological Role of Leucocyte Matrix Metalloproteinases. In: Ansorge, S., Langner, J. (eds) Cellular Peptidases in Immune Functions and Diseases. Advances in Experimental Medicine and Biology, vol 421. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9613-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9613-1_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9615-5

  • Online ISBN: 978-1-4757-9613-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics