Skip to main content

Contrasting Roles of a Brain-Specific Protein Kinase C Substrate

Has Protein F1 Evolved a New Function in CNS of Higher Vertebrates?

  • Chapter
Cellular Mechanisms of Conditioning and Behavioral Plasticity

Abstract

Increased phosphorylation of the neuronal membrane-bound protein F1 and translocation of its kinase, Ca2+- and phospholipid-stimulated protein kinase C (PKC), have been related to long-term increases in adult synaptic efficacy in a number of reports from our laboratory (Routtenberg et al.,1985; Lovinger et al., 1985; Akers et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akers, R. F., and Routtenberg, A., 1985, Kinase C phosphorylates a protein involved in synaptic plasticity, Brain Res. 334: 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Akers, R. F., Lovinger, D., Colley, P., Linden, D., and Routtenberg A., 1986, Translocation of protein kinase C activity may mediate hippocampal long term potentiation, Science 231: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Benowitz, L. I., and Lewis, E. R., 1983, Increased transport of 44,000- to 49,000-dalton acidic proteins during regeneration of the goldfish optic nerve: A two-dimensional gel analysis, J. Neurosci. 3: 2153–2163.

    PubMed  CAS  Google Scholar 

  • Berger, T. W., 1984, Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning, Science 224: 627–630.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, E., and Stelzner, D., 1983, Plasticity of the corticospinal tract following mid-thoracic spinal injury in post-natal rat, J. Comp. Neurol. 221: 382–400.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V. P., and Lomo, T., 1973, Long lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol. (Lond.) 232: 357–374.

    CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257: 7847–7851.

    PubMed  CAS  Google Scholar 

  • Desmond, N. L., and Levy, W. B., 1983, Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus, Brain Res. 265: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. M., and Goddard, G. V., 1975, Long-term potentiation of the perforant path—granule cell synapse in the rat hippocampus, Brain Res. 86: 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Gispen, W. H., Leunissen, J. L. M., Oestreicher, A. B., Verkleij, A. J., and Zwiers, H., 1985a, Presynaptic localization of 50 phosphoprotein: The (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism, Brain Res. 328: 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Gispen, W. H., Van Dongen, C. J., De Graan, P. N. E., Oestreicher, A. B., and Zwiers, H., 1985b, The role of phosphoprotein B50 in phosphoinositide metabolism in brain synaptic plasma membranes, in: Inositol and Phosphoinositides ( J. E. Bleasdale, G. Hauser, and J. Eichberg, ed.), Humana Press, Dallas, pp. 399–414.

    Chapter  Google Scholar 

  • Gispen, W. H., De Graan, P. N. E., Chan, S. Y., and Routtenberg, A., 1986, Comparison between the neural acidic proteins B50 and F1, in: Progress in Brain Research, Volume 69 (W. H. Gispen and A. Routtenberg, eds.), Elsevier, Amsterdam, pp. 383–386.

    Google Scholar 

  • Hsu, L., Natyzak, D., and Laskin, J. D., 1984, Effects of the tumor promoter 12-O-tetradecanoylphorbol-13acetate on neurite outgrowth from chick embryonic sensory ganglia, Cancer Res. 44: 4607–4614.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., Weisel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Phil. Trans. R. Soc. Lond. [Biol.] 278: 377–409.

    Article  CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 503: 793–820.

    Article  Google Scholar 

  • Kalil, K., and Reh, T., 1979, Regrowth of severed axons in the neonatal CNS; establishment of normal connections, Science 205: 1158–1161.

    Article  PubMed  CAS  Google Scholar 

  • Katz, F., Ellis, L., and Pfenninger, K. H., 1985, Nerve growth cones isolated from fetal rat brain: Calcium dependent protein phosphorylation, J. Neurosci. 5: 1402–1411.

    PubMed  CAS  Google Scholar 

  • Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase from rat brain, J. Biol. Chem. 257: 13341–13348.

    PubMed  CAS  Google Scholar 

  • Kraft, A. S., and Andersen, W. B., 1983, Phorbol esters increase the amount of calcium, phospholipiddependent protein kinase associated with the plasma membrane, Nature 301: 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson, G. I., Zwiers, H., Oestricher, A. B., and Gispen, W. H., 1982, Evidence that the synaptic phosphoprotein B50 is localized exclusively in nerve tissues, J. Neurochem. 39: 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neurol. 11: 245–262.

    Article  PubMed  CAS  Google Scholar 

  • Larson, J., and Lynch, G., 1986, Induction of synaptic potentiation in hippocampus by patterned stimulation involves two events, Science 232: 985–988.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. S., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol. 44: 247–258.

    PubMed  CAS  Google Scholar 

  • Levy, W. B., and Steward, O., 1983, Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus, Neuroscience 8: 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger, D. M., Akers, R. F., Nelson, R. B., Barnes, C. A., McNaughton, B. L., and Routtenberg, A., 1985, A selective increase in the phosphorylation of protein Fl, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement, Brain Res. 343: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Lovinger, D. M., Colley, P. A., Akers, R. F., Nelson, R. B., and Routtenberg, A., 1986, Direct relation of long-duration synaptic potentiation to phosphorylation of membrane protein Fl: A substrate for membrane protein kinase C, Brain Res. 399: 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, S. A., Brugge, J. S., and Levine, J. M., 1986, Induction of an altered c-src protein accompanies the neural differentiation of an embryonal cell line, Soc. Neurosci. Abstr. 12: 2–16.

    Google Scholar 

  • Macara, I. G., 1985, Oncogenes, ions, and phospholipids, Am. J. Physiol. 248: C3 — C11.

    PubMed  CAS  Google Scholar 

  • Macko, K. A., Jarvis, C. D., Kennedy, C., Miyaoka, M., Shinohara, M., Sokoloff, L., and Mishkin, M., 1982, Mapping the primate visual system with 2-[14C]deoxyglucose, Science 218: 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. I., Ng, M. L., and Mazat, J. P., 1980, Protein phosphorylation in synaptic membranes: Problems of interpretation, in: Protein Phosphorylation and Bio-Regulation ( G. Thomas, E. J. Podesta, and J. Gorson, eds.), Karger, Basel, pp. 25–36.

    Google Scholar 

  • Mishkin, M., 1982, A memory system in the monkey, Phil. Trans. R. Soc. Lond. [Biol.] 298: 85–95.

    Article  Google Scholar 

  • Mishkin, M., and Ungerleider, L. G., 1982, Contributions of striate inputs to the visuospatial functions of parietopreoccipital cortex in monkeys, Behay. Brain Res. 6: 57–77.

    Article  CAS  Google Scholar 

  • Murphy, K. M. M., Gould, R. J., Oster-Granite, M. L., Gearheart, J. D., and Snyder, S. H., 1983, Phorbol esters receptors: Autoradiographic identification in the developing rat, Science 222: 1036–1038.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. B., and Routtenberg, A., 1985, Characterization of the 47kD protein FI (pI 4.5), a kinase C substrate directly related to neural plasticity, Exp. Neurol. 89: 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. B., Routtenberg, A., Hyman, C., and Pfenninger, K. H., 1985, A phosphoprotein, F1, directly related to neuronal plasticity in adult rat brain may be identical to a major growth cone membrane protein, Soc. Neurosci. Abstr. 11: 927.

    Google Scholar 

  • Nelson, R. B., Friedman, D. P., O’Neill, J. B., Mishkin, M., and Routtenberg, A., 1986, Protein kinase C substrate phosphorylation in primate cerebral cortex (e.g., protein FI) is increased in those stages of the occipitotemporal visual processing pathway important for information storage, Soc. Neurosci. Abstr. 12: 11–68.

    Google Scholar 

  • Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. U.S.A. 80: 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher, A. B., Dekker, L. V., and Gispen, W. H., 1986, A radioimmunoassay for the phosphoprotein B50: Distribution in rat brain, J. Neurochem. 46: 1366–1369.

    Article  PubMed  CAS  Google Scholar 

  • Pandya, D. N., and Kuypers, H. G. J. M., 1969, Cortico-cortical connections in the rhesus monkey, Brain Res. 13: 13–36.

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg, A., 1982, Memory formation as a posttranslational modification of brain proteins, in: Mechanisms and Models of Neural Plasticity. Proceedings V/th International Neurobiology IBRO Symposium on Learning and Memory ( C. A. Marsden and H. Matthies, eds.), Raven Press, New York, pp. 17–24.

    Google Scholar 

  • Routtenberg, A., 1985, Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth, Behay. Neural Biol. 44: 186–200.

    Article  CAS  Google Scholar 

  • Routtenberg, A., Lovinger, D., and Steward, O., 1985, Selective increase in the phosphorylation of a 47kD protein (F1) directly related to long-term potentiation, Behay. Neural Biol. 43: 3–11.

    Article  CAS  Google Scholar 

  • Simkowitz, P., Ellis, L., and Pfenninger, K. H., 1987, Developmentally regulated membrane proteins of nerve growth cones and synaptic endings, (submitted for publication).

    Google Scholar 

  • Skene, J. H. P., 1984, Growth-associated proteins and the curious dichotomies of nerve regeneration, Cell 37: 697–700.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J. H. P., and Willard, M., 1981a, Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells, J. Cell Biol. 89: 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J. H. P., and Willard, M., 1981b, Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous system, J. Cell Biol. 89: 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Skene, J. H. P., and Willard, M., 1981c, Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons, J. Neurosci. 1: 419–426.

    PubMed  CAS  Google Scholar 

  • Snipes, J., Freeman, J. A., Costello, B., Chan, S., and Routtenberg, A., 1986, A growth associated protein, GAP43, is immunologically and structurally related to the plasticity associated protein, protein Fl, Soc. Neurosci. Abstr. 12: 500.

    Google Scholar 

  • Van Harreveld, A., and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic stimulation, Exp. Neurol. 49: 736–739.

    Article  PubMed  Google Scholar 

  • Weisel, T. N., and Hubel, D. H., 1963, Single-cell responses in striate cortex of kittens deprived of vision in one eye, J. Neurophysiol. 26: 1003–1117.

    Google Scholar 

  • Wolf, M., Cuatrecasas, P., and Sahyoun, N., 1985, Interaction of protein kinase C with membranes is regulated by Ca++, phorbol esters, and ATP, J. Biol. Chem. 260: 15718–15722.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelson, R.B., Routtenberg, A. (1988). Contrasting Roles of a Brain-Specific Protein Kinase C Substrate. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics