Skip to main content

Ferromagnetic Resonance

  • Chapter
Catalyst Characterization

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Ferromagnetic resonance (FMR) is a magnetic resonance comparable to nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR); in these techniques the effect of a microwave irradiation is to flip the magnetic moments oriented in a magnetic field. Unlike EPR or NMR resonances, which operate on nuclear or electron spin, FMR concerns magnetic domains of a ferromagnetic material, i.e., the so-called Weiss domains. The first observation of FMR was reported by Griffiths in 1946(1) for electrolytically deposited films of iron, cobalt, and nickel. The first application to catalysis was made by Hollis and Selwood in 1961 on nickel-supported catalysts.(2) This technique can be used not only for ferromagnetic materials (metals and their alloys)(3,4) but also for ferrimagnetic materials (oxides such as garnets) (5) Usually, the magnetic moment, whose intensity depends on the Weiss domain volume as we shall see later on, is about three orders of magnitude greater than the magnetic moment of an electron. As a consequence, a quantum mechanical description of FMR phenomena is not necessary as it is for EPR or NMR spectroscopies. Furthermore, the temperature-dependent magnetization of ferromagnetic materials is at least three orders of magnitude more intense than in the case of paramagnetic materials. Therefore, though the FMR linewidths are usually very broad, this is the most sensitive spectroscopy for characterization (about one hundred times more sensitive than EPR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. E. Griffiths, Nature 158, 670 (1946).

    Article  Google Scholar 

  2. D. Hollis and P. W. Selwood, J. Chem. Phys. 35, 378 (1961).

    Article  CAS  Google Scholar 

  3. B. Herpin, Théorie du Magnétisme, PUF, Paris (1968).

    Google Scholar 

  4. C. H. Morrish, The Physical Principle of Magnetism, John Wiley and Sons, New York (1965).

    Google Scholar 

  5. D. E. Patton, in: Magnetic Oxides ( D. J. Craik, ed.) John Wiley and Sons, New York (1975), p. 575.

    Google Scholar 

  6. E. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New York (1962), p. 145.

    Google Scholar 

  7. F. P. Wohlfarth, Ferromagnetic Materials, North-Holland, Amsterdam (1980).

    Google Scholar 

  8. A. A. Slinkin, Russ. Chem. Rev. 37, 642 (1968).

    Article  Google Scholar 

  9. P. Weiss, J Phys., Ser. 4, 6, 661 (1907).

    Google Scholar 

  10. P. W. Selwood, Chemisorption and Magnetization, Academic, New York (1975).

    Google Scholar 

  11. L. D. Landau and E. M. Lifschitz, Phys. Z; Soviet. 8, 153 (1935).

    Google Scholar 

  12. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).

    Google Scholar 

  13. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  CAS  Google Scholar 

  14. N. Bloembergen, Phys. Rev. 78, 572 (1950).

    Article  CAS  Google Scholar 

  15. L. Bonneviot, F. X. Cai, M. Che, M. Kermarec, O. Legendre, C. Lepetit, and D. Olivier, J. Phys. Chem. 91, 5912 (1987).

    Article  CAS  Google Scholar 

  16. L. Néel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  17. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120-S (1959).

    Article  Google Scholar 

  18. L. Bonneviot, Thesis, Université P. et M. Curie, Paris (1983).

    Google Scholar 

  19. A. Aharoni, Phys. Rev. B 7, 1103 (1973).

    Article  Google Scholar 

  20. A. Aharoni, Phys. Rev. 117, 793 (1969).

    Article  Google Scholar 

  21. L. Bonneviot, M. Che, D. Olivier, G. A. Martin, and E. Freund, J. Phys. Chem. 90, 2112 (1986).

    Article  CAS  Google Scholar 

  22. A. J. Simoens, Thesis, Faculté Universitaire Notre-Dame de la Paix, Namur, Belgium, (1980).

    Google Scholar 

  23. D. Fargues, F. Vergand, E. Belin, C. Bonnelle, D. Olivier, L. Bonneviot, and M. Che, Surf. Sci. 106, 239 (1981).

    Article  CAS  Google Scholar 

  24. P. A. Jacobs, H. Nijs, J. Verdonck, E. G. Derouane, J. P. Gilson, and A. J. Simoens, J. Chem. Soc. Faraday Trans. 175, 1196 (1979).

    Google Scholar 

  25. E. G. Derouane, A. J. Simoens, C. Colin, G. A. Martin, J. A. Dalmon, and J. C. Védrine, J. Catal. 52, 50 (1978).

    Article  CAS  Google Scholar 

  26. E. Schlömann, J. Phys. Chem. Solids 6, 257 (1958).

    Article  Google Scholar 

  27. S. Bagdonat and M. J. Patni, J. Mag. Res. 15, 359 (1974)

    Google Scholar 

  28. C. M. Srivastava and M. J. Patni, J. Phys. 38, Cl, 267 (1977).

    Google Scholar 

  29. J. A. Osborn, Phys. Rev. 67, 351 (1945).

    Article  Google Scholar 

  30. C. P. Poole, Electron Spin Resonance, John Wiley and Sons, New York (1967), p. 525.

    Google Scholar 

  31. M. Che, J. C. Védrine and C. Naccache, J. Chim. Phys. 66, 579 (1969).

    CAS  Google Scholar 

  32. J. D. Livingston and C. P. Bean, J. Appl. Phys. 30, 318-S (1959).

    Article  Google Scholar 

  33. R. S. De Biasi and T. C. Devezas, Phys. Lett. 50 A, 137 (1974)

    Google Scholar 

  34. R. S. De Biasi and T. C. Devezas, Phys. Lett. B 87, 1425 (1977).

    Google Scholar 

  35. L. Néel, J. Phys. Radium 15, 225 (1954).

    Article  Google Scholar 

  36. W. Göpel and B. Wiechmann, J. Vac. Sci. Technol. 20, 219 (1982).

    Article  Google Scholar 

  37. M. M. P. Janssen, J. Appl. Phys. 41, 384 (1970).

    Article  CAS  Google Scholar 

  38. K. L. Chopra, Thin Film Phenomena, McGraw-Hill, New York (1969), p. 266.

    Google Scholar 

  39. J. F. Freedman, J. Appl. Phys. 33, 1148 (1962).

    Article  CAS  Google Scholar 

  40. S. Chikazumi, J. Appl. Phys. 32, 81-S (1961).

    Article  CAS  Google Scholar 

  41. S. Kuriki, J. Appl. Phys. 48, 2992 (1977).

    Article  CAS  Google Scholar 

  42. M. Che, M. Richard, and D. Olivier, J. Chem. Soc. Faraday Trans. 176, 1526 (1980).

    Google Scholar 

  43. V. K. Sharma and A. Baiker, J. Chem. Phys. 75, 5596 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonneviot, L., Olivier, D. (1994). Ferromagnetic Resonance. In: Imelik, B., Vedrine, J.C. (eds) Catalyst Characterization. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9589-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9589-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9591-2

  • Online ISBN: 978-1-4757-9589-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics