Skip to main content

Exo-Endocytotic Recycling of Synaptic Vesicles in Developing Neurons

  • Chapter
Botulinum and Tetanus Neurotoxins

Abstract

Regulated secretion of neurotransmitters from neurons involves a cocktail of neurotransmitter molecules and at least two classes of secretory organdies: synaptic vesicles (SVs) and large dense core vesicles (LDCVs). SVs are small vesicles highly homogeneous in size (about 50 nm) which are clustered under the presynaptic plasmalemmma and contain non-peptide neurotransmitters.Their exocytosis is responsible for the fast, point-to-point signalling typical of synaptic transmission. LDCVs are larger organelles with an electron dense core which contain neuroactive peptides and may also contain amines. Their exocytosis is involved in a slower, modulatory intercellular signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Camilli P, Jahn R. Pathways to regulated exocytosis in neurons. Ann Rev Physiol 1990; 52, 625–645.

    Article  Google Scholar 

  2. Matteoli M, Thomas Reetz A, De Camilli P. Small synaptic vesicle and large dense core vesicles: secretory organelles involved in two modes of neuronal signalling. In: Volume transmission in the brain: novel mechanisms for neural transmission. New York: Raven Press, 1991: 181–193.

    Google Scholar 

  3. Südhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 1991; 6, 665–677.

    Article  PubMed  Google Scholar 

  4. De Camilli P, Benfenati F, Valtorta F, Greengard P. The synapsins. Ann Rev Cell Biol 1990; 6: 433–460.

    Article  Google Scholar 

  5. Trimble WS, Linial M, Scheller RH. Cellular and molecular biology of the presynaptic nerve terminal. Ann Rev Neurosci 1991; 14: 93–122.

    Article  PubMed  CAS  Google Scholar 

  6. Matteoli M, De Camilli P. Molecular mechanisms in neurotransmitter release. Curr Opinion in Neurobiol 1991; 1: 91–97.

    Article  CAS  Google Scholar 

  7. Bartlett WP, Banker GA. An electron microscopic study of the development of axon and dendrites by hippocampal neurons in culture. I. Cells which develop without intracellular contacts. J Neurosci 1984a; 4, 1944–1953.

    PubMed  CAS  Google Scholar 

  8. Bartlett WP, Banker GA. An electron microscopic study of the development of axon and dendrites by hippocampal neurons in culture. Il Synaptic relationships. J Neurosci 1984b; 4, 1954–1965.

    PubMed  CAS  Google Scholar 

  9. Dotti CG, Sullivan CA, Banker GA. The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988; 8: 1454–1468.

    PubMed  CAS  Google Scholar 

  10. Goslin K, Banker G. Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 1989: 108: 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  11. Fletcher TL, Cameron PL, De Camilli P, Banker, G. The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J Neurosci 1991; 11: 1617–1626

    PubMed  CAS  Google Scholar 

  12. De Camilli P, Cameron R, Greengard P. Synapsin I (protein 1), a nerve terminal specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 1983; 96, 1337–1354.

    Article  PubMed  Google Scholar 

  13. Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin I. J Cell Biol 1989; 108: 111–126.

    Article  PubMed  CAS  Google Scholar 

  14. Benfenati F, Valtorta F, Greengard P. Computer modeling of synapsin I binding to synaptic vesicles and F-actin: implications for regulation of neurotransmitter release. Proc Natl Acad Sci 1991; 88: 575–579.

    Article  PubMed  CAS  Google Scholar 

  15. Benfenati F, Valtorta F, Chieregatti E, Greengard P. Interation of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 1992; 8: 377–386.

    Article  PubMed  CAS  Google Scholar 

  16. Fischer v. Mollard G, Mignery G, Baumert M, Perin MS, Hanson TJ, Burger PM, Jahn R, Siidhof TC. Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA 1990; 87: 1988–1992.

    Article  Google Scholar 

  17. Fischer v. Mollard G, Südhof TC, Jahn R. A small G protein dissociates from vesicles during exocytosis. Nature 1991; 349: 79–82.

    Article  Google Scholar 

  18. Matteoli M, Takei K, Cameron R, Hurlbut P, Johnston PA, Südhof TC, Jahn R, De Camilli P. Association of rab3A with synaptic vesicles at late stages of the secretory pathway. J.Cell Biol 1991; 115: 625–633.

    Article  PubMed  CAS  Google Scholar 

  19. Matteoli M, Takei K, Perin MS, Südhof TC, De Camilli P. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J Cell Biol 117: 849–861.

    Google Scholar 

  20. Matthew, W.D., Tsavaler, L. and Reichardt, L.F. (1981) Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol. 91, 257–269.

    Article  PubMed  CAS  Google Scholar 

  21. Perin MS, Fried VA, Mignery GA, Jahn R, Siidhof TC. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 1990; 345: 260–263.

    Article  PubMed  CAS  Google Scholar 

  22. Perin MS, Brose N, Jahn R, Siidhof T. Domain structure of synaptotagmin (p65). J Biol Chem 1991; 266: 623–629.

    PubMed  CAS  Google Scholar 

  23. Perin MS, Johnston P., Ozcelik T, Jahn R, Francke U, Sudhöf TC. Structural and functional conservation of synaptophysin (p65) in Drosophila and humans. J Biol Chem 1991; 266: 615–622.

    PubMed  CAS  Google Scholar 

  24. Geppert M,Archer BT, Siidhof TC. Synaptotagmin I1: a novel differentially distributed form of synaptotagmin I. J Biol Chem 1991; 266,:13548–13552.

    Google Scholar 

  25. Wendland B, Miller KG, Schilling J, Schellen RH. Differential expression of the p65 gene family. Neuron 1991; 6: 993–1007.

    Article  PubMed  CAS  Google Scholar 

  26. Ceccarelli B, Hurlbut WP, Mauro A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1973; 57: 499–524.

    Article  PubMed  CAS  Google Scholar 

  27. Heuser JE, Reese TS. Evidence for recycling of synaptic vesicles membranes during transmitter release at the frog neuromuscular junction. J Cell Biol 1973; 57: 315344.

    Google Scholar 

  28. Hume RI, Role LW, Fishbach GD. Acetylcholine release from growth cones detected with patches of acetylcholine rich membranes. Nature 1983; 305: 632–634.

    Article  PubMed  CAS  Google Scholar 

  29. Young SH, Poo MM. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature 1983; 305, 634–637.

    Article  PubMed  CAS  Google Scholar 

  30. Sun Y, Poo MM. Evoked release of acetylcholine from the growing embryonic neuron. Proc Natl Acad Sci. 1987; 84: 2540–2544.

    Article  PubMed  CAS  Google Scholar 

  31. Evers J, Laser M, Sun YA, Xie ZP, Poo MM. Studies of nerve-muscle interactions in Xenopus cell cultures: Analysis of early synaptic currents. J Neurosci 1989; 9: 1523–1539.

    PubMed  CAS  Google Scholar 

  32. Mattson MP. Neurotransmitters in the regulation of neuronal cytoarchitecture. Br Res Rev 1988; 13: 179–212.

    Article  CAS  Google Scholar 

  33. Fatt, P. and Katz, B. (1952) Spontaneous subtreshold activity at motor nerve endings. J. Physiol. ( London ) 117, 109–128.

    Google Scholar 

  34. Hubbard, J.I., Jones, S.F. and Landau, E.M. (1968) On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals. J. Phyisiol. 194, 355–380.

    CAS  Google Scholar 

  35. Zoran MJ, Doyle RT, Haydon PG. Target contact regulates the calcium responsiveness of the secretory machinery during synaptogenesis. Neuron 1991; 6: 145–151.

    Article  PubMed  CAS  Google Scholar 

  36. Cameron PL, Südhof TC, Jahn R, De Camilli P. Colocalization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis. J Cell Biol 1991; 115: 151–164.

    Article  PubMed  CAS  Google Scholar 

  37. Fuller SD, Simons K. Transferrin receptor polarity and recycling accuracy in “Tight” and “Leaky” strains of Madine-Darby canine kidney cells. J Cell Biol 1986; 103: 1767–1779.

    Article  PubMed  CAS  Google Scholar 

  38. Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 1986; 103: 2511–2527.

    Article  PubMed  CAS  Google Scholar 

  39. Wiedenmann B, Rehm H, Knierim M, Becker CM. Fractionation of synaptophysincontaining vesicles from rat brain and cultured PC12 pheochromocytoma cells. FEBS Lett. 1988; 240: 71–77.

    Article  PubMed  CAS  Google Scholar 

  40. Reetz AT, Solimena M, Matteoli M, Folli F,Takei K, De Camilli P. GABA and pancreatic beta cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J. 1991; 10: 1275–1284.

    PubMed  CAS  Google Scholar 

  41. Johnston PA, Cameron PL, Stukenbrok H, Jahn R, De Camilli P, Südhof TC. Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. EMBO J 1989; 8: 2863–2872.

    PubMed  CAS  Google Scholar 

  42. Linstedt AD, Kelly RB. Synaptophysin is sorted from endocytotic markers in neuroendocrine PC12 cells but not transfected fibroblasts. Neuron 1991; 7: 309317.

    Google Scholar 

  43. Kim YI, Lomo T, Lupa MT, Thesleff S. Miniature end-plate potentials in rat skeletal muscle poisoned with botulinum toxin. J Physiol 1984; 356: 587–599.

    PubMed  CAS  Google Scholar 

  44. Molgo J, Comella JX, Angaut-Petit D, Pecot-Dechavassine M, Tabti N, Faille L, Mallart A, Thesleff S. Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J Physiol Paris 1990; 84: 152–166.

    PubMed  CAS  Google Scholar 

  45. Alderson K, Holds JB, Anderson RL. Botulinum-induced alteration of nerve-muscle interactions in the human orbicularis oculi following treatment for blepharospasm. Neurology 1991; 41: 1800–1805.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matteoli, M., De Camilli, P. (1993). Exo-Endocytotic Recycling of Synaptic Vesicles in Developing Neurons. In: DasGupta, B.R. (eds) Botulinum and Tetanus Neurotoxins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9542-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9542-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9544-8

  • Online ISBN: 978-1-4757-9542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics