Skip to main content

Application of Computational Chemistry in the Study of Biologically Reactive Intermediates

  • Chapter
Biological Reactive Intermediates V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 387))

  • 303 Accesses

Abstract

The toxicity of most xenobiotics is associated with their enzymatic conversion to toxic metabolites, a process termed bioactivation. Although stable, but toxic, metabolites may be formed, as in the biotransformation of dichloromethane to carbon monoxide, most bioactivation reactions afford electrophilic, reactive intermediates. The reactivity of these intermediates usually prevents their direct observation and characterization. Hence strategies that permit the experimentalist to gain insight into the formation and fate of reactive intermediates is of much value in understanding bioactivation reactions. The objective of this review is to point out the utility of computational chemistry in studying the formation and fate of toxic metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bowen, J. P., Charifson, P. S., Fox, P. C., Kontoyianni, M., Miller, A. B. Schnur, D., Stewart, E. L., Van Dyke, C., 1993, Computer-assisted molecular modeling: Indispensable tools for molecular pharmacology, J. Clin. Pharmacol, 33, 1149–1164.

    Article  PubMed  CAS  Google Scholar 

  2. Andrianov, A. M., and Akhrem, A. A., 1993, Model of the spatial structure of peptide T, Molekuliarnai Biologiia 27, 934–946.

    CAS  Google Scholar 

  3. Goddard III, W. A., 1985, Theoretical chemistry comes alive: Full partner with experiment, Science 227, 917–923.

    Article  PubMed  CAS  Google Scholar 

  4. Schaefer III, H. F., 1986, Methylene: A paradigm for computational quantum chemistry, Science 231, 1100–1107.

    Article  PubMed  CAS  Google Scholar 

  5. Anders, M. W., 1991, Metabolism and toxicity of hydrochlorofluorocarbons: Current knowledge and needs for the future, Environ. Health Perspect. 96, 185–191.

    Article  PubMed  CAS  Google Scholar 

  6. Korzekwa, K. R., Jones, J. P., and Gillette, J. R., 1990, Theoretical studies on cytochrome P-450 mediated hydroxylation: A predictive model for hydrogen atom abstractions, J. Am. Chem. Soc. 112, 7042–7046.

    Article  CAS  Google Scholar 

  7. Olson, M. J., Kim, S. G., Reidy, C. A., Johnson, J. T., and Novak, R. F., 1991, Oxidation of 1,1,1,2-tetrafluoroethane (R-134a) in rat liver microsomes is catalyzed primarily by cytochrome P450IIE1, Drug Metab. Dispos. 19, 298–303.

    PubMed  CAS  Google Scholar 

  8. Herbst, J., Köster, U., Kerssebaum, R., and Dekant, W., 1994, Role of P4502E1 in the metabolism of l,1,2,2-tetrafluoro-l-(2,2,2-trifluoroethoxy)-ethane, Xenobiotica 24, 507–516.

    Article  PubMed  CAS  Google Scholar 

  9. O’Hagan, D., and Rzepa, H. S., 1994, Stereospecific control of the citrate synthase mediated synthesis of (2R,3R)-3-fluorocitrate by the relative stabilities of the intermediate fluorocnolates, J. Chem. Soc, Chem. Commun. 1994, 2029–2030.

    Article  Google Scholar 

  10. Martin, D. P., Bibart, R. T., and Drueckhammer, D. G., 1994, Synthesis of novel analogs of acetyl coenzyme A: Mimics of enzyme reaction intermediates. J. Am. Chem. Soc. 116, 4660–4668.

    Article  CAS  Google Scholar 

  11. Tsai, R.-S., Carrupt, P.-A., Testa, B., and Caldwell, J., 1994, Structure-genotoxicity relationships of allylbenzenes and propenylbenzenes: A quantum chemical study, Chem. Res. Toxicol. 7, 73–76.

    Article  PubMed  CAS  Google Scholar 

  12. Hartung, R., 1982, Cyanide and nitriles, In Patty’s Industrial Hygiene and Toxicology (Patty, F. A., Clayton, G. D., and Clayton, F. E., Eds.) pp. 4845–4900, Interscience, New York.

    Google Scholar 

  13. Grogan, J., DeVito, S. C, Pearlman, R. S., and Korzekwa, K. R., 1992, Modeling cyanide release from nitriles: Prediction of cytochrome P450 mediated acute nitrile toxicity, Chem. Res. Toxicol. 5, 548–552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anders, M.W., Yin, H., Jones, J.P. (1996). Application of Computational Chemistry in the Study of Biologically Reactive Intermediates. In: Snyder, R., et al. Biological Reactive Intermediates V. Advances in Experimental Medicine and Biology, vol 387. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9480-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9480-9_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9482-3

  • Online ISBN: 978-1-4757-9480-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics