Skip to main content

Roles of Submicron Particles and Colloids in Microbial Food Webs and Biogeochemical Cycles within Marine Environments

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 15))

Abstract

The recent discovery of numerous detrital submicron particles in diverse marine environments (Koike et al., 1990; Longhurst et al., 1992; Wells and Goldberg, 1991, 1994) has stirred the interest of oceanographers and has spurred studies into the roles of these small particles in marine food webs and biogeochemical fluxes. The abundance of non-living submicron particles (107–1010 particles ml−1) far exceeds the number of living particles of similar size dimensions, including phytoplankton, bacteria, and viruses (Koike et al., 1990; Wells and Goldberg, 1991; see Table I). Bulk chemical measurements have confirmed that the “colloidal fraction” (size, 0.001–1 μm) represents a large fraction (10–50%) of total “dissolved” organic carbon (DOC) in seawater (Ogawa and Ogura, 1992; Benner et al., 1992; Gau et al., 1994). Several provocative hypotheses have been proposed to explain the roles of colloids and submicron particles in trophic dynamics (Sherr, 1988; Flood et al., 1992), aggregate formation (Alldredge et al., 1993; Kepkay, 1994), and condensation of organic matter (Nagata and Kirchman, 1992b, 1996; Keil and Kirchman, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., Passow, U., and Logan, B. E., 1993, The abundance and significance of a class of large, transparent organic particles in the ocean, Deep-Sea Rea. 6: 1131–1140.

    Article  Google Scholar 

  • Altabet, M. A., 1990, Organic C, N, and stable isotopic composition of particulate matter collected on glass-fiber and aluminum oxide filters, Lirnnol. Oceanogr. 35: 902–909.

    Article  CAS  Google Scholar 

  • Amon, R. M. W., and Benner, R., 1994, Rapid cycling of high-molecular-weight dissolved organic matter in the ocean, Nature 369: 549–552.

    Article  CAS  Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water column microbes in the sea, Mar. Ecol. Prog. Ser. 10: 257–263.

    Article  Google Scholar 

  • Azam, F., Smith, D. C., Steward, G. F., and Hagstrom, A., 1994, Bacteria-organic matter coupling and its significance for oceanic carbon cycling, Microb. Ecol. 28: 167–179.

    Article  CAS  Google Scholar 

  • Baines, S. B., and Pace, M. L., 1991, The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems, Limnol. Oceanogr. 36: 1078–1090.

    Article  Google Scholar 

  • Barbeau, K., Moffett, J. W., Caron, D. A., Croot, P. L., and Erdner, D. L., 1996, Role of protozoan grazing in relieving iron limitation of phytoplankton, Nature 380: 61–64.

    Article  CAS  Google Scholar 

  • Bauer, J. E., Williams, P. M., and Druffel, E. R. M., 1992, 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea, Nature 357: 667–670.

    Google Scholar 

  • Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. T., and Hatcher, P. G., 1992, Bulk chemical characteristics of dissolved organic matter in the ocean, Science 255: 1561–1564.

    Article  PubMed  CAS  Google Scholar 

  • Bergh, O., Borsheim, K. Y., Bratbak, G., and Heldal, M., 1989, High abundance of viruses found in aquatic environments, Nature 340: 467–468.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, C. A., and Ducklow, H. W., 1995, Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: daily and fine-scale vertical variations, Deep-Sea Res. 42: 639–656.

    Article  CAS  Google Scholar 

  • Carlson, C. A., Ducklow, H. W., and Michaels, A. F., 1994, Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea, Nature 371: 405–408.

    Article  CAS  Google Scholar 

  • Carlson, D. J., Brann, M. L., Mague, T. H., and Mayer, L. M., 1985, Molecular weight distribution of dissolved organic materials in seawater determined by ultrafiltration: A re-examination, Mar. Chem. 16: 155–171.

    Article  CAS  Google Scholar 

  • Caron, D. A., and Goldman, J. C., 1993, Predicting excretion rates of protozoa: reply to the comment by Landry, Limnol. Oceanogr. 38: 472–474.

    Article  Google Scholar 

  • Cauwet, G., 1981, Non-living particulate matter, in: Marine Organic Chemistry ( E. K. Duursma and R. Dauson, eds.), Elsevier, New York, pp. 71–89.

    Google Scholar 

  • Chisholm, S. W., Olsonm, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B., and Welschmeyer, N. A., 1988, A novel free-living prochlorophyte abundant in the oceanic euphotic zone, Nature 334: 340–343.

    Article  Google Scholar 

  • Chrost, R. J., 1991, Environmental control of synthesis and activity of aquatic microbial ectoenzymes, in: Microbial enzymes in aquatic environments ( R. J. Chrost, ed.), Springer-Verlag, New York, pp. 29–59.

    Chapter  Google Scholar 

  • Cole, J. J., Findlay, S., and Pace, M. R., 1988, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Mar. Ecol. Prog. Ser. 43: 1–10.

    Article  Google Scholar 

  • Decho, A. W., 1990, Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes, Oceanogr. Mar. Biol. Annu. Rev. 28: 73–153.

    Google Scholar 

  • Decho, A. W., and Lopez, G. R., 1993, Exopolymer microenvironments of microbial flora: Multiple and interactive effects on trophic relationships, Limnol. Oceanogr. 38: 1633–1645.

    Article  CAS  Google Scholar 

  • Deibel, D., and Lee, S. H., 1992, Retention efficiency of sub-micrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoe(jeni, Mar. Ecol. Prog. Ser. 81: 25–30.

    Article  Google Scholar 

  • Ducklow, H. W., 1984, Geographical ecology of marine bacteria: physical and biological variability at the mesoscale, in: Current Perspectives in Microbial Ecology ( M. J. Klug and C. A. Reddy, eds.). American Society for Microbiology, Washington, DC, pp. 22–31.

    Google Scholar 

  • Ducklow, H. W., and Carlson, C. A.. 1992, Oceanic bacterial production, Adv. Microb. Ecol. 12: 113–181.

    Article  Google Scholar 

  • Ducklow, H. W., Kirchman, D. L., Quinby, H. L., Carlson, C. A., and Dam, H. G., 1993, Bacterioplankton carbon cycling during the spring bloom in the eastern North Atlantic Ocean, Deep-Sea Res. 11. 40: 245–263.

    Google Scholar 

  • Fenchel, T., 1987, Ecology of Protozoa: The Biology of Free-Living Phagotrophic Protists, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Flood, P. R., Deibel, D., and Morris, C. C., 1992, Filtration of colloidal melanin from sea water by planktonic tunicates, Nature 355: 630–632.

    Article  CAS  Google Scholar 

  • Fogg, G. E., 1983, The ecological significance of extracellular products of phytoplankton photosynthesis, Bot. Marina 26: 3–14.

    Article  CAS  Google Scholar 

  • Francois, R., 1990, Marine sedimentary humic substances: Structure, genesis and properties, Rev. Aquat. Sci. 3: 41–80.

    CAS  Google Scholar 

  • Fuhrman, J., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser. 37: 45–52.

    Article  CAS  Google Scholar 

  • Fuhrman, J., Sleeter, T. D., Carlson, C. A., and Proctor, L. M., 1989, Dominance of bacterial biomass in the Sargasso sea and its ecological implications, Mar. Ecol. Prog. Ser. 57: 207–217.

    Article  Google Scholar 

  • Gonzales, J. M., and Suttle, C. A., 1993, Grazing by marine nanoflagellates on viruses and virussized particles: ingestion and digestion, Mar. Ecol. Prog. Ser. 94: 1–10.

    Article  Google Scholar 

  • Gonzales, J. M., Sherr, E. B., and Sherr, B. F., 1990, Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates, Appl. Environ. Microbiol. 56: 583–589.

    Google Scholar 

  • Guo, L., Coleman, C. H., Jr., and Santschi, P. H., 1994, The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico, Mar. Chem. 45: 105–119.

    Article  CAS  Google Scholar 

  • Hara, S., Terauchi, K., and Koike, I., 1991, Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy, Appl. Environ. Microbiol. 57: 2731–2734.

    PubMed  CAS  Google Scholar 

  • Hedges, J. 1., 1988, Polymerization of humic substances in natural environments, in: Humic Substances and Their Role in the Environment ( F. H. Frimmel and R. F. Christman, eds.), John Wiley & Sons, New York, pp. 45–58.

    Google Scholar 

  • Herndl, G. J., Muller-Niklas, G., and Frick, J., 1993, Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean, Nature 361: 717–719.

    Article  Google Scholar 

  • Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol. 33: 1225–1228.

    PubMed  CAS  Google Scholar 

  • Hoppe, H. G., Ducklow, H., and Karrasch, B., 1993, Evidence for dependency of bacterial growth on enzymatic hydrolysis of particulate organic matter in the mesopelagic ocean, Mar. Ecol. Prog. Ser. 93: 277–283.

    Article  Google Scholar 

  • Hutchins, D. A., and Bruland, K. W., 1994, Grazer-mediated regeneration and assimilation of Fe, Zn and Mn from planktonic prey, Mar. Ecol. Prog. Ser. 110: 259–269.

    Article  CAS  Google Scholar 

  • Johnson, B. D., and Kepkay, P. E., 1992, Colloid transport and bacterial utilization of oceanic DOC, Deep-Sea Res. 39: 855–869.

    Article  CAS  Google Scholar 

  • Jumars, P. A., Penry, D. L., Baross, J. A., Perry, M. J., and Frost, B. W., 1989, Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals, Deep-Sea Res. 36: 483–495.

    Article  CAS  Google Scholar 

  • Keil, R. G., and Kirchman, D. L., 1993, Dissolved combined amino acids: chemical form and utilization by marine bacteria, Limnol. Oceanogr. 38: 1256–1270.

    Article  CAS  Google Scholar 

  • Keil, R. G., and Kirchman, D. L., 1994, Abiotic transformation of labile protein to refractory protein in seawater, Mar. Chem. 45: 187–196.

    Article  CAS  Google Scholar 

  • Keil, R. G., Montlucon, D. B., Prahl, F. G., and Hedges, J. I., 1994, Sorptive preservation of labile organic matter in marine sediments, Nature 370: 549–552.

    Article  Google Scholar 

  • Kepkay, P. E., 1994, Particle aggregation and the biological reactivity of colloids, Mar. Ecol. Prog. Ser. 109: 293–304.

    Article  Google Scholar 

  • Kirchman, D. L., 1993, Particulate detritus and bacteria in marine environments, in: MicrobiologyAn ecological approach ( T. E. Ford, ed.), Blackwell Scientific Publications, Boston, pp. 321–341.

    Google Scholar 

  • Kirchman, D. L., 1994, The uptake of inorganic nutrients by heterotrophic bacteria, Microb. Ecol. 28: 255–271.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., Suzuki, Y., Garside, C., and Ducklow, H. W., 1991, High turnover rates of dissolved organic carbon during a spring phytoplankton bloom, Nature 352: 612–614.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., Ducklow, H. W., McCarthy, J. J. and Garside, C., 1994, Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean, Deep-Sea Res. 41: 879–895.

    Article  Google Scholar 

  • Koike, I., Hara, S., Terauchi, K. and Kogure, K., 1990, The role of submicrometer particles in the ocean, Nature 345: 242–244.

    Article  Google Scholar 

  • Koike, 1., Hara, S., Terauchi, K., Shibata, A., and Kogure, K., 1993, Marine viruses—their role in upper ocean dissolved organic matter (DOM) dynamics, in: Trends in Microbial Ecology ( R. Guerrero and C. Pedros-Alio, eds.), Spanish Society for Microbiology, Barcelona, pp. 311–314.

    Google Scholar 

  • Lampert, W., 1978, Release of dissolved organic carbon by grazing zooplankton, Limnol. Oceanogr. 23: 831–834.

    Article  CAS  Google Scholar 

  • Landry, M. R., 1993, Predicting excretion rates of microzooplankton from carbon metabolism and elemental ratios, Limnol. Oceanogr. 38: 468–472.

    Article  Google Scholar 

  • Lee, S., and Fuhrman, J., 1987, Relationships between biovolume and biomass of naturally derived marine bacterioplankton, Appl. Environ. Microbiol. 53: 1298–1303.

    PubMed  CAS  Google Scholar 

  • Lee, C., and Wakeham, S. G., 1992, Organic matter in the water column: future research challenges, Mar. Chem. 39: 95–118.

    Article  CAS  Google Scholar 

  • Leppard, G. G., 1984, The ultrastructure of lacustrine sedimenting materials in the colloidal size range, Arch. Hydrobiol. 101: 521–530.

    Google Scholar 

  • Libby, P. S., and Wheeler, P. A., 1994, A wet-oxidation method for determination of particulate organic nitrogen on glass fiber and 0.2 p.m membrane filters, Mar. Chem. 48: 31–41.

    Article  CAS  Google Scholar 

  • Longhurst, A. R., Koike, I., Li, W. K. W., Rodriguez, J., Dickie, P., Kepkay, P., Partensky, F., Bautista, B., Ruiz, J., Wells, M., and Bird, D., 1992, Sub-micron particles in northernwest Atlantic shelf water, Deep-Sea Res. 39: 1–7.

    Article  Google Scholar 

  • Marchant, H. J., and Scott, F. J., 1993, Uptake of sub-micrometer particles and dissolved organic material by Antarctic choanoflagellates, Mar. Ecol. Prog. Ser. 92: 59–64.

    Article  Google Scholar 

  • Massalski, A., and Leppard, G. G., 1979, Morphological examination of fibrillar colloids associated with algae and bacteria in lakes., Jour. Fish. Res. Board Canada 36: 922–938.

    Article  Google Scholar 

  • Murphy, L. S., and Haugen, E. M., 1985, The distribution and abundance of phototrophic ultraplankton in the North Atlantic, Limnol. Oceanogr. 30: 47–58.

    Article  Google Scholar 

  • Nagata, T., and Kirchman, D. L., 1991, Release of dissolved free and combined amino acids by bacterivorous marine flagellates, Limnol. Oceanogr. 36: 433–443.

    Article  CAS  Google Scholar 

  • Nagata, T., and Kirchman, D. L., 1992a, Release of dissolved organic matter by heterotrophic protozoa: implications for microbial food webs, Arch. Hydrobiol. 35: 99–109.

    Google Scholar 

  • Nagata, T., and Kirchman, D. L., 1992b, Release of macromolecular organic complexes by heterotrophic marine flagellates, Mar. Ecol. Prog. Ser. 83: 233–240.

    Article  CAS  Google Scholar 

  • Nagata, T., and Kirchman, D. L., 1996, Bacterial degradation of protein adsorbed to model sub-micron particles in seawater, Mar. Ecol. Prog. Ser. 132: 241–248.

    Article  CAS  Google Scholar 

  • Newman, M. E., Filella, M., Chen, Y., Negre, J-C., Perret, D., and Buffle, J., 1994, Submicron particles in the Rhine River—II. Comparison of field observations and model predictions, Wat. Res. 28: 103–118.

    Article  Google Scholar 

  • Ogawa, H., and Ogura, N., 1992, Comparison of two methods for measuring dissolved organic carbon in the sea water, Nature 356: 696–698.

    Article  CAS  Google Scholar 

  • Passow, U., Alldredge, A. L., and Logan, B. E., 1994, The role of particulate carbohydrate exudates in flocculation of diatom blooms, Deep-Sea Res. 41: 335–357.

    Article  CAS  Google Scholar 

  • Peitzer, E. T., and Hayward, N. A., 1996, Spatial and temporal variability of total organic carbon along 140°W in the equatorial Pacific Ocean in 1992, Deep-Sea Res. 43: 1155–1180.

    Article  Google Scholar 

  • Pomeroy, L. R., and Deibel, D., 1986, Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters, Science 233: 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Porter, K., and Feig, Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Article  Google Scholar 

  • Posch, T., and Arndt, H., 1996, Uptake of sub-micrometre and micrometre-sized detrital particles by bacterivorous and omnivorous ciliates, Aqual. Microb. Ecol. 10: 45–53.

    Article  Google Scholar 

  • Proctor, L. M., and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature 343: 60–62.

    Article  Google Scholar 

  • Rees, T. F., 1990, Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions, Water Resources Res. 26: 2777 2781.

    Google Scholar 

  • Santschi, P. H., Guo, L., Baskaran, M., Trumbore, S., Southon, J., Bianchi, T. S., Honeyman, B., and Cifuentes, L., 1995, Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments, Geochim. Cosmochim. Act. 59: 625–631.

    Article  CAS  Google Scholar 

  • Sherr, E. B., 1988, Direct use of high molecular weight polysaccharide by heterotrophic flagellates, Nature 335: 348–351.

    Article  CAS  Google Scholar 

  • Shimeta, J., 1993, Diffusional encounter of submicrometer particles and small cells by suspension feeders, Limnol. Oceanogr. 38: 456–465.

    Article  Google Scholar 

  • Shimeta, J., and Jumars, P. A., 1991, Physical mechanisms and rates of particle capture by suspension-feeders, Oceanogr. Mar. Biol. Annu. Rev. 29: 191–257.

    Google Scholar 

  • Siegenthaler, U., and Sarmiento, J. L., 1993, Atmospheric carbon dioxide and the ocean, Nature 365: 119–125.

    Article  CAS  Google Scholar 

  • Sieracki, M. E., and Viles, C. L., 1992, Distributions and fluorochrome staining properties of submicrometer particles and bacteria in the North Atlantic, Deep-Sea Res. 39: 1919–1929.

    Article  Google Scholar 

  • Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F., 1992, Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution, Nature 359: 139–142.

    Article  CAS  Google Scholar 

  • Tanoue, E., 1995, Detection of dissolved protein molecules in oceanic waters, Mar. Chem. 51: 239–252.

    Article  CAS  Google Scholar 

  • Tanoue, E., Nishiyama, S., Kamo, M., and Tsugita, A., 1995, Bacterial membranes: Possible source of a major dissolved protein in seawater, Geochim. Cosmochim. Act. 59: 2643–2648.

    Article  CAS  Google Scholar 

  • Taylor, G. T., 1995, Microbial degradation of sorbed and dissolved protein in seawater, Limnol. Oceanogr. 40: 875–885.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1994, Colloidal and dissolved organic matter excreted by a mixotrophic flagellate during bacterivory and autotrophy, Appl. Environ. Microbial. 60: 1884–1888.

    CAS  Google Scholar 

  • Tranvik, L. J., Sherr, E. B., and Sherr, B. F., 1993, Uptake and utilization of “colloidal DOM” by heterotrophic flagellates in seawater, Mar. Ecol. Prog. Ser. 92: 301–309.

    Article  Google Scholar 

  • Turk, V., Rehnstam, A.-S., Lundberg, E., and Hagstrom, A., 1992, Release of bacterial DNA by marine nanoflagellates, an intermediate step in phosphorous regeneration, Appl. Environ. Microbial. 58: 3744–3750.

    CAS  Google Scholar 

  • Viles, C. L., and Sieracki, M. E., 1992, Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy, Appl. Environ. Microbial. 58: 584–592.

    CAS  Google Scholar 

  • Waterbury, J. B., Watson, S. W., Buillard, R. R. L., and Brand, L. E., 1979, Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium, Nature 227: 293–294.

    Article  Google Scholar 

  • Wells, M. L., and Goldberg, E. D., 1991, Occurrence of small colloids in sea water, Nature 353: 342–344.

    Article  CAS  Google Scholar 

  • Wells, M. L., and Goldberg, E. D., 1992, Marine submicron particles, Mar. Chem. 40: 5–18.

    Article  CAS  Google Scholar 

  • Wells, M. L., and Goldberg, E. D., 1993, Colloid aggregation in seawater, Mar. Chem. 41: 353–358.

    Article  CAS  Google Scholar 

  • Wells, M. L., and Goldberg, E. D., 1994, The distribution of colloids in the North Atlantic and Southern Ocean, Limnol. Oceanogr. 39: 286–302.

    Article  Google Scholar 

  • Williams, P. J. leB., 1995, Evidence for the seasonal accumulation of carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and consequential effect on net C/N assimilation ratios, Mar. Chem. 51: 17–29.

    Article  CAS  Google Scholar 

  • Williams, P. M., and Druffel, E. R. M., 1987, Radiocarbon in dissolved organic matter in the central North Pacific Ocean, Nature 330: 246–248.

    Article  CAS  Google Scholar 

  • Williams, P. M., and Druffel, E. R. M., 1988, Dissolved organic matter in the ocean: comments on a controversy, Oceanography 1: 14–17.

    Article  Google Scholar 

  • Yamamoto, S., and Ishiwatari, R., 1989, A study of the formation mechanisms of sedimentary humic substances Il. protein-based melanoidin model, Org. Geochem. 14: 479–489.

    Article  CAS  Google Scholar 

  • Zweifel, U. L., and Hagstrom, A., 1995, Total counts of marine bacteria include a large fraction of non-nucleoid containing “ghosts,” Appl. Environ. Microhiol. 61: 2180–2185.

    CAS  Google Scholar 

  • Zweifel, U. L., Wikner, J., and Hagstrom, A., 1995, Dynamics of dissolved organic carbon in a coastal ecosystem, Limnol. Oceanogr. 40: 299–305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagata, T., Kirchman, D.L. (1997). Roles of Submicron Particles and Colloids in Microbial Food Webs and Biogeochemical Cycles within Marine Environments. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9074-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9074-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9076-4

  • Online ISBN: 978-1-4757-9074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics