Skip to main content

Effect of Mercuric Chloride on Angiotensin II-Induced Ca++ Transient in the Proximal Tubule of Rats

  • Chapter
Advances in Mercury Toxicology

Part of the book series: Rochester Series on Environmental Toxicity ((RSET))

  • 255 Accesses

Abstract

Angiotensin II (AII) is a powerful agent in the regulation of renal functions, and possesses its receptor(s) within the kidney. The second messenger of AII is considered to be Ca++. Since mercuric chloride is one of nephrotoxic heavy metals, its effects on All-mediated signal transduction have been investigated.

Rat kidneys were treated with collagenase, and microdissection was made for isolating defined nephron segments. [Ca++]i was determined using fluorescent indicator fura-2. In the freshly isolated early proximal tubule (S1), All-induced [Ca++]i rise was biphasic, demonstrating the two peaks corresponding to the 10−11 and 10−7M. HgCl2 (10−10 – 10−8M) potentiated the [Ca++]i increase induced by AII (10−11M) in a dose dependent manner, up to the 10−9M HgCl2. A similar effect was observed with methylmercury. To determine the mechanism of stimulatory effect of HgCl2 on 10−11M AII-induced [Ca++]i increase, nephron segments were pretreated with propranolol (10−4M), a PLC inhibitor. This stimulatory effect of HgCl2 was completely inhibited by propranolol. Moreover, 10−4M propranolol completely blocked the stimulatory effect of HgCl2 on AII-mediated inositol 1,4,5-triphosphate (IP3) production.

This study suggests for the first time that mercurial compounds stimulates the [Ca++]i increment induced by AII, possibly through an activation of phospholipase C (PLC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benabe, J. E., Spry, L. A., and Morrison, A. R., 1982, Effect of angiotensin II on phosphatidylinositol and polyphosphoinositide turnover in rat kidney, J. Biol. Chem., 257:7430–7434.

    PubMed  CAS  Google Scholar 

  • Blackwell, G. J., and Flower, R. J., 1983, Inhibition of phospholipase, Br. Med. Bull., 39:260–264.

    CAS  Google Scholar 

  • Brock, T. A., Rittenhouse, S. E., Powers, C. W., Ekstein, L. S., Gimbrone, M. A., and Alexander, R. W., 1985, Phorbol ester and 1-oleoyl-2-acetylglycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells, J. Biol. Chem., 260:14158–14162.

    PubMed  CAS  Google Scholar 

  • Brunder, D. G., Dettbarn, C., and Palade, P., 1988, Heavy metal-induced Ca2+ release from sarcoplasmic reticulum, J. Biol. Chem., 263:18785–18792.

    PubMed  CAS  Google Scholar 

  • Chau, L. Y. and Tai, H. H., 1982, Resolution into two different forms and study of the properties of phosphatidylinositol-specific phospholipase C from human platelet cytosol, Biochem, Biophys. Acta, 713:344–351.

    Article  CAS  Google Scholar 

  • Endou, H., Koseki, C., Yamada, H., and Obara, T., 1986, Evaluation of nephrotoxicity using isolated nephron segments, in: “Nephrotoxicity of Antibiotics and Immunosuppressants,” T. Tanabe, J. B. Hook, and H. Endou, eds., 207–216, Elsevier, Amsterdam.

    Google Scholar 

  • Goldstein, L., 1987, Renal substrate utilization in normal and acidotic rats, Am. J. Physiol, 253:F351–F357.

    PubMed  CAS  Google Scholar 

  • Griendling, K. K., Rittenhouse, S. E., Brock, T. A., Ekstein, L. S., Gimbrone, M. S., and Alexander, R. W., 1986, Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells, J. Biol. Chem., 261:5901–5906.

    PubMed  CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y., 1985, A new generation of Ca++ indicators with greatly improved fluorescene properties, J. Biol. Chem. 260:3440–3450.

    PubMed  CAS  Google Scholar 

  • Harris, P. J., and Navar, L. G., 1985, Tubular transport responses to angiotensin, Am. J. Physiol., 248:F621–630.

    PubMed  CAS  Google Scholar 

  • Hinkle, P. C., and McCarty, R., 1978, How cells make ATP, Sci. Amer., 238:104–123.

    Article  PubMed  CAS  Google Scholar 

  • Hoch, B. S., Gorfien, P. C., Linzer, D., Fusco, M. J., and Levine, S. D., 1989, Mercurial reagents inhibit flow through ADH-induced water channels in toad bladder, Am. J. Physiol., 256(25):F948–F953.

    PubMed  CAS  Google Scholar 

  • Hostetler, K. Y., and Matsuzawa, Y., 1981, Studies on the mechanism of drug-induced lipidosis: Cationic amphiphilic drug inhibition of lysosomal phosphodipase A and C, Biochem. Pharmacol., 30:1121–1126.

    Article  PubMed  CAS  Google Scholar 

  • Houser, M. T., and Berndt, W. O., 1988, Unilateral nephrectomy in the rat: Effect on mercury handling and renal cortical subcellular distribution, Toxicol. Appl. Pharmacol., 93:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, Y., Saijoh, K., and Sumino, K., 1988, Action of mercurials on activity of partially purified soluble protein kinasec from mice brain, Pharmacol. Toxicol., 62:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. M., and Garrison, J. C., 1987, Epidermal growth factor and angiotensin II stimulate formation of inositol 1,4,5-and inositol 1,3,4-triphosphate in hepatocytes, J. Biol Chem., 262:17285–17293.

    PubMed  CAS  Google Scholar 

  • Jung, K. Y, Uchida, S., and Endou, H., 1989, Nephrotoxicity Assessment by Measuring Cellular ATP Content. Toxicol. Appl. Pharmacol., 100:369–382.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K. Y., and Endou, H., 1989a, Nephrotoxicity Assessment by Measuring Cellular ATP Content, Toxicol. Appl. Pharmacol., 100:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Jung, K. Y., and Endou, H., 1989b, Biphasic increasing effect of angiotensin-II on intracellular free calcium in isolated rat early proximal tubule, Biochem. Biophys. Research Communications, 165(3):1221–1228.

    Article  CAS  Google Scholar 

  • Kikkawa, U., Go, M., Koumoto, J., and Nishizuka, Y., 1986, Rapid purification of protein kinase C by high performance liquid chromatography, Biochem. Biophys. Res. Commun., 135:636–643.

    Article  PubMed  CAS  Google Scholar 

  • Klein, K. L., Wang, M. S., Torikai, S., Davidson, W. D., and Kurokawa, A., 1981, Substrate oxidation by isolated single nephron segments of the rat, Kidney Int., 20:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, I., Kojima, K., and Rasmussen, H., 1985, Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from acrenal glomerulosa, J. Biol. Chem. 260:9177–9184.

    PubMed  CAS  Google Scholar 

  • Manillier, C., Vinay, P., Lalonde, L., and Gougoux, A., 1986, ATP turnover and renal response of dog tubules to pH changes in vitro, Amer. J. Physiol., 251:F919–F932.

    PubMed  CAS  Google Scholar 

  • Moraes, V. L. G., and Meis, L., 1987, ATP synthesis by the (Na++K+)-ATPase in the absence of an ionic gradient, FEBS Lett., 222:163–166.

    Article  PubMed  Google Scholar 

  • Parker, P. J., Coussens, L., Totty, N., Rhee, L., Chen, Y. E., Stabel, S., Waterfield, M. D., and Ullrich, A., 1986, The complete primary structure of protein kinase C-the major phorbol ester receptor, Science, 233:853–859.

    Article  PubMed  CAS  Google Scholar 

  • Pratz, J., Ripoche, P., and Corman, B., 1986, Evideme for proteic water pathways in the luminal membrane of kidney proximal tubule, Biochim. Biophys. Acta., 856:259–266.

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein, D. L., 1978, The chemistry of methylmercury toxicology, J. Chem.Educ., 55:292–296.

    Article  CAS  Google Scholar 

  • Rasmussen, H., 1986a, Mechanisms of disease: The calcium Messenger System, New Eng. J. Med., 314:1164–1170.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg, C. E., Gandolfi, A. J., Nagle, R. B., and Bredel, Kl, 1987, Differential patterns of injury to the proximal tubule of renal cortical slices following in vitro exposure to mercuric chloride, potassium, dichromate, or hypoxic condition, Toxicol. Appl. Pharmacol. 90:261–273.

    Article  PubMed  CAS  Google Scholar 

  • Schlondorff, D., DeCandido, S., and Satriano, J. A., 1987, Angiotensin II stimulates phospholipaye C and A2 in cultured rat mesangial cells, Am. J. Phisiol., 253:C113–C120.

    CAS  Google Scholar 

  • Schuster, V. L., Kokko, J. P. and Jacobson, R. H., 1984, Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules, J. Clin. Invest, 73:507–515.

    Article  PubMed  CAS  Google Scholar 

  • Silva, P., 1987, Renal fuel utilization, energy requirements and function, Kidney Int., 32.-S9–S14.

    Google Scholar 

  • Smith, L. B., Smith, L., Brown, E. R., Barnes, D., Sabir, M. A., Davis, J. S., and Farese, R. V., 1984, Angiotensin II rapidly increases phosphatidate-phosphoinositide synthesis and phosphoinositide hydrolysis and mobilizes intracellular calcium in cultured arterial muscle cells, Proc. Natl. Acad. Sci. USA, 81:7812–7816.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. W., Ambudkar, I. S., Phelps, P. C., Regec, A. L., and Trump, B. F., 1987, HgCl2-induced changes in cytosolic Ca2+ cultured rabbit renal tubular cells, Biochim. Biophys. Acta., 931:130–142.

    Article  PubMed  CAS  Google Scholar 

  • Trimm, J. L., Salarna, G., and Abramson, J. J., 1986, Salfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesides, J. Biol. Chem., 261:16092–16098.

    PubMed  CAS  Google Scholar 

  • Uchida, S., and Endou, H., 1988, Substrate specificity to maintain cellular ATP along the mouse nephron, Amer. J. Physiol., 255:F977–F983.

    PubMed  CAS  Google Scholar 

  • Weindemann, M. J., and Krebs, H. A., 1969, The fuel of respiration of rat kidney cortex, Biochem. J., 112:149–166.

    Google Scholar 

  • Weinberg, J. M. and Humes, H. D., 1986, Increase of cell ATP produced by exogenous adenosine nucleotides in isolated rabbit kidney tubules, Amer. J. Physiol., 250:F720–F733.

    PubMed  CAS  Google Scholar 

  • Wirthensohn, G., and Guder, W. G., 1986, Renal substrate metabolism, Physiol.Rev., 66(2):469–497.

    PubMed  CAS  Google Scholar 

  • Woodcock, E. A., and Johnston, C. I., 1982, Inhibition of adenylate cyclase by angiotensin II in rat renale cortex, Endocrinol., 111:1687–1691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Endou, H., Jung, K.Y. (1991). Effect of Mercuric Chloride on Angiotensin II-Induced Ca++ Transient in the Proximal Tubule of Rats. In: Suzuki, T., Imura, N., Clarkson, T.W. (eds) Advances in Mercury Toxicology. Rochester Series on Environmental Toxicity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9071-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9071-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9073-3

  • Online ISBN: 978-1-4757-9071-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics