Skip to main content

Abstract

The method described here relies on interval arithmetic and graph theory to compute guaranteed coverings of strange attractors like Hénon attractor. It copes with infinite intervals, using either a geometric method or a new directed projective interval arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Barnsley. Fractals everywhere. Academic Press, 1988.

    Google Scholar 

  2. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Massachusets, 1990.

    MATH  Google Scholar 

  3. J-F. Colonna. Kepler, von Neumann and God. The Visual Computer, 12: 346–349, 1996.

    Google Scholar 

  4. Z. Galias. Rigorous numerical studies of the existence of periodic orbits for the Hénon map. J. Universal Computer Science, 4 (2): 114–124, 1997.

    MathSciNet  Google Scholar 

  5. M. Hénon. Numerical study of quadratic area-preserving mappings. Quart. Applied Math., (27): 291–312, 1969.

    Google Scholar 

  6. M. Hénon. A two dimensional map with a strange attractor. Commun. Math. Phys., 50: 69–77, 1976.

    Article  MATH  Google Scholar 

  7. A. Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence regions. Comput. Supplementum, 9: 175–190, 1993.

    Article  Google Scholar 

  8. A. Neumaier and T. Rage. Rigorous chaos verification in discrete dynamical systems. Physica D, 67: 327–346, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Ott. Chaos in dynamical systems Cambridge University Press, 1993.

    Google Scholar 

  10. M. Pichat and J. Vignes. CADNA: a tool for studying chaotic behavior in dynamical systems. Proc. Real Numbers and Computers, Ecole des Mines, St-Etienne, France, April 4–6, 1995.

    Google Scholar 

  11. T. Rage, A. Neumaier and C. Schlier. Rigorous verification of chaos in a molecular model. Phys. Rev. E., 50, 2682–2688, 1994.

    Article  Google Scholar 

  12. C. Robinson. Dynamical systems: stability, symbolic dynamics, and chaos. CRC Press, 1995.

    Google Scholar 

  13. J. Stolfi. Oriented Projective Geometry. Academic Press, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michelucci, D. (2001). Reliable Representations of Strange Attractors. In: Krämer, W., von Gudenberg, J.W. (eds) Scientific Computing, Validated Numerics, Interval Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6484-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6484-0_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3376-8

  • Online ISBN: 978-1-4757-6484-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics