Skip to main content

Natural high potency sweeteners

  • Chapter
Handbook of Sweeteners

Abstract

It is almost certain that since early in time the sense of sweet taste has directed both man and animals to nutritive substances. Thus taste perception probably played an essential role for survival. From an evolutionary view point, it is also likely that plants took advantage of this aspect of sweet taste to propagate their species by producing sweet fruits and other edible parts. Thus, on a volume basis, most natural sweet substances are carbohydrates from plants. However, it is also apparent that some non-carbohydrate compounds have accidentally acquired a sweet taste with no nutritive intention. Most natural sweeteners belong to this category. In modern times, at least for most people of the Western world, the attainment of adequate nourishment has not been an issue, and sweet taste perception has been sought after for the alternative purpose of giving pleasure and enjoyment. In fact, twentieth-century man is more likely than not to consume excess calories. This overnourished population has increasingly succumbed to obesity and to illnesses which are favored by excess calorie consumption (e.g. cardiovascular disease, diabetes, cancer, etc.). Therefore non-nutritive sweeteners have assumed increasing importance in modern days. This chapter covers natural high-potency sweeteners, their synthetic modificants and high-potency sweeteners constituted of natural sub-units. Specifically excluded are carbohydrate sweeteners, which, though ubiquitous in nature, are of trivial sweetness potency. Among many reviews on sweeteners, a recent one (van der Wel et al., 1987) gives extensive coverage to carbohydrate sweeteners as well as many non-natural sweeteners. This chapter covers protein sweeteners (by S.-H. Kim) and non-protein sweeteners such as peptide sweeteners, terpenoid sweeteners, and polyketide sweeteners (by G.E. DuBois). Since interest in sweeteners is proportional to their viability for use in food products, the sweeteners discussed in this review will generally be described relative to the properties requisite for commercial viability. A detailed dissertation on these properties is provided in Section 6.6 and the reader is referred to it for clarification of any points not apparent in earlier sections. In the sweetener literature, various methods have been employed for reporting sweetness potencies. This complication is discussed in detail in Section 6.6. We have recalculated sweetness potencies in some cases, for the purpose of placing all data on the same scale. The recalculation methodology employed is described in Section 6.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton, E.M. and Stone, H. (1976). Potential new artificial sweetener from study of structure-taste relationships. Science 193, 584–586.

    Article  Google Scholar 

  • Arakawa, H., and Nakazaki, M. (1959). Absolute configuration of phyllodulcin. Chem. Ind. (London), 671

    Google Scholar 

  • Asahina, Y. and Asano, J. (1931) Uber die Konstitution von Hydrangeol und Phyllodulcin. IV. Mitteil: Synthese des Phyllodulcin-dimethylathers, Chem. Ber. 64, 1252–1256.

    Google Scholar 

  • Asahina, Y. and Ueno, E. (1916) Phyllodulcin, a Chemical Constituent of Amacha (Hydrangea thunbergi Sieb.). J. Pharm. Soc. Jpn. 408.

    Google Scholar 

  • Baldwin, R.E. and Korschgen, B.M., (1979) Intensification of fruit-flavors by aspartame. J. Food Sci. 44, 938–939.

    Article  Google Scholar 

  • Barreau and van der Wel (1983) The effect of thaumatins on the chemotactic behaviour of Escherichia coll. Chemical Senses 8, 71–80.

    Article  Google Scholar 

  • Beynon, R. and Cusack, M. (1990) Thaumatin not protedytic (letter). Nature, 344, 498.

    Article  Google Scholar 

  • Blum, R.B., Gardlik, J.M., Janusz, J.M. and Rizzi, G.P. (1987) Alpha-L-Aspartyl-D-Heteroaromatic-substituted glycine esters and amides useful as high intensity sweeteners

    Google Scholar 

  • U.S. Patent 4,692,513 (to The Procter and Gamble Company) September 8, 1987.

    Google Scholar 

  • Bohak, Z. and Li, S.-L. (1976) The structure of monellin and its relation to the sweetness of the protein. Biochim. Biophys. Acta 427 153–170.

    Article  Google Scholar 

  • Brennan, T.M. and Hendrick, M.E. (1983) Branched amides of L-aspartyl-D-amino acid dipeptides, U.S. Patent 4,411,925 (to Pfizer, Inc.).October 25, 1983.

    Google Scholar 

  • Brouwer, J.N., Hellekant, G., Kasahara, Y., van der Wel, H. and Zotterman, Y. (1987) Electrophysiological study of gustatory effects of sweet proteins monellin and thaumatin in monkey, guinea pig and rat. Acta Physiol. Scan. 89, 550–557.

    Article  Google Scholar 

  • Burton, E.G., Schoenhard, G.L., Hill, J.A., Schmidt, R.E., Hribar, J.D., Kotsonis, F.N. and Oppermann, J.A. (1989) Identification of N-li-L-Aspartyl-L-phenylalanine as a normal constituent of human plasma and urine, J. Nutr. 119, 713–721.

    Google Scholar 

  • Butchko, H.H. and Kotsonis, F.N., (1989) Aspartame: review of recent research, Comments on Toxicology 3 (4), 253–278.

    Google Scholar 

  • Cagan, R.H. and Morris, R.N. (1976) The sulhydral group of monellin; its chemical reactivity and importance to the sweet taste. Proc. Soc. Exp. Biol. Med. 152, 635–640.

    Article  Google Scholar 

  • Chang, S.S. and Cook, J.M. (1983) Stability studies of stevioside and rebaudioside A in carbonated beverages. J. Agric. Food Chem. 31, 409–412.

    Article  Google Scholar 

  • Chemical Marketing Reporter (1989) December 25 Issue, Schnell Publishing Company, New York, N.Y.

    Google Scholar 

  • Choi, Y.-H., Kinghorn, A.D., Sid, X., Zhang, H., and Teo, B.K. (1989) Abrusoside A: a new type of highly sweet triterpene glycoside. J. Chem. Soc., Chem. Commun. 887–888.

    Google Scholar 

  • Code of Federal Regulations (1988) Title 21 (Food and Drugs) Section 182.1, pp. 385–6 (April 1, 1988 ).

    Google Scholar 

  • Code of Federal Regulations (1989) Title 21 (Food and Drugs), Section 570.30, p 611 (April 1, 1989).

    Google Scholar 

  • Compadre, C.M., Pezzuto, J.M., Kinghorn, A.D., and Kamath, S.K. (1985) Hernandulcin: An intensely sweet compound discoverd by review of ancient literature. Science 227, 417–419.

    Article  Google Scholar 

  • Compadre, C.M., Robbins, E.F., and Kinghorn, A.D. (1986) The intensely sweet herb Lippia dulcis trev.: historical uses, field inquiries and constituents. J. Ethnopharmacology 5, 89–106.

    Article  Google Scholar 

  • Compadre, C.M., Hussain, R.A., Lopez de Compadre, R.L., Pezzuto, J.M. and Kinghorn, A.D. (1987) The intensely wweet sesquiterpene hernandulcin: isolation, synthesis, characterization and preliminary safety evaluation. J. Agric. Food Chem., 35, 273–279.

    Article  Google Scholar 

  • Compadre, C.M., Hussain, R.A., Lopez de Compadre, R.L., Pezzuto, J.M. and Kinghom, A.D. (1988) Analysis of structural features responsible for the sweetness of the sequiterpene hrnandulcin. Experientia 44, 447–449.

    Article  Google Scholar 

  • Comelissen, B.J., Hooft van Huijsduijnen, R.A. and Bol, J.F. (1986) A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321, 531–532.

    Article  Google Scholar 

  • Crammer, B. and Ikan, R., (1987) Progress in the chemistry and properties of rebaudioside, in Developments in Sweeteners-3. T.H. Grenby, ed., Elsevier Applied Science, New York, N.Y., pp. 45–81.

    Google Scholar 

  • Danse, M., Mizutani, K., Kasai, R., Tanaka, O., Kitahata, S., Okada, S., Ogawa, S., Murakami, F., and Chen, F.-H. (1984) Enzymic transglucsylation of rubusoside and the structure-sweetness-relationship of steviol-bisglycosides. Agric. Biol. Chem. 48, 2483–2488.

    Article  Google Scholar 

  • de Vos, A.M., Hatada, M., van der Wel, H., Krabbendam, H., Peerdemann, A. F., and Kim, S.-H. (1985) Three-dimensional structure of thaumatin I, an intensely sweet protein, Pro. Natl. Acad. Sci. USA 82, 1406–1409.

    Article  Google Scholar 

  • Drenth, J., Low, B.W., Richardson, J.S., and Wright, C.S. (1980) The toxin-agglutin fold, J. Biol. Chem. 255, 2652–2655.

    Google Scholar 

  • DuBois, G.E., Crosby, G.A., and Stephenson, R.A., (1981a) Dihydrochalcone sweeteners. a study of the atypical temporal phenomena. J. Med. Chem. 24, 408–428.

    Article  Google Scholar 

  • DuBois, G.E. (1981b) Dynapol Company, Palo Alto, CA. unpublished results.

    Google Scholar 

  • DuBois, G.E. Dietrich, P.S., Lee, J.F., McGarraugh, G.V., and Stephenson, R.A., (1981d) Diterpenoid sweeteners. synthesis and sensory evaluation of stevioside analogues nondegradable to steviol. J. Med. Chem. 24, 1269–1271.

    Article  Google Scholar 

  • DuBois, G.E., (1982a) in Annual Reports in Medicinal Chemistry, 17, H-J. Hess, Ed., Academic Press, New York, N.Y., 323–332.

    Google Scholar 

  • DuBois, G.E., and Stephenson, R.A., (1982b) Dihydrochalcone sweeteners. synthesis, sensory evaluation, and chiral eluant chromatography of the D and L antipodes of a potently sweet, sucrose-like homoserine-dihydrochalcone conjuagate. J. Agric. Food Chem. 30, 676–681.

    Article  Google Scholar 

  • DuBois, G.E., and Lee, J.F., (1983) A simple technique for the evaluation of temporal taste properties. Chemical Senses 7, 237–246.

    Article  Google Scholar 

  • DuBois, G.E., Bunes, L.A., Dietrich, P.S., and Stephenson, R.A. (1984) Diterpenoid sweeteners. Synthesis and sensory evaluation of biologically stable analogues of stevioside. J. Agric. Food Chem. 32, 1321–1325.

    Article  Google Scholar 

  • DuBois, G.E. and Stephenson, R.A. (1985a) Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogues with improved organoleptic properties. J. Med. Chem. 28, 93–98.

    Article  Google Scholar 

  • DuBois, G., and Muller, G. (1985b) The NutraSweet Company, Mount Prospect, IL unpublished results.

    Google Scholar 

  • Edens, L., Deslinga, L., Klok, R., Ledeboer, A.M., Maat, J., Toonen, M.Y., Visser, C. and Verripo, C.T. (1982) Cloning of the cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Eschericia coll. Gene 18, 1–12.

    Google Scholar 

  • Eguchi, I., (1988) Sweet substance in hen egg proteins. Japanese patent application 63–48298 (to Azinomoto Kaisha) February 29, 1988.

    Google Scholar 

  • Esaki, S., Tanaka, R., and Kamiya, S. (1984) Synthesis and taste of certain steviol glycosides. Agric. Biol. Chem. 48, 1831–1834.

    Article  Google Scholar 

  • Fahlberg, C. and Remsen, I., (1879) Uber die xydation des orthotoluosulfamids. Berichte 12, 469–473.

    Google Scholar 

  • Farkas, L., Nogrady, M., Gottsegen, A., and Antus, S. (1973) Neue 1,3-diphenyl-propano-1 Derivate and ihre Salz bzw. diese Verbindungen enthaltende Versussungmittel. German Patent 2,258,304 (to Chinoin Gyogyszer es Vegyeszeti Termekek Gyara RT) July 5, 1973. Federal Register (1985). 50, (99), (May 22 issue), pp. 21043–21045.

    Google Scholar 

  • Frank, G. and Zuber, H. (1976) The complete amino acid sequences of both subunits of the sweet protein monellin. Z. Physiol. Chem. 357, 585–592.

    Article  Google Scholar 

  • Fujino, M., Wakimasu, M., Mano, M., Tanaka, K., Nakajima, N., and Aoki, H., (1976) Structure-taste relationships of L-aspartyl-aminomalonic acid diesters, Chem. Pharm. Bull, 24 (9), 2112–2117.

    Article  Google Scholar 

  • Fukunaga, Y., Miyata, T., Nakayasu, N., Mizutani, K., Kasai, R., and Tanaka, O. (1989) Enzymic transglucosylation products of stevioside: separation and sweetness evaluation. Agric. Biol. Chem. 53, 1603–1607.

    Article  Google Scholar 

  • Fuller, W.D., Goodman, M., and Verlander, M.S. (1985) A new class of amino acid based sweeteners, J. Am. Chem. Soc. 107, 5821–5822.

    Article  Google Scholar 

  • Guignet, E. (1885) De l’existence de la glycyrrhizine dans plusieurs familles vegetales. C.R. Hebd. Seances Acad. Sci. 100, 151.

    Google Scholar 

  • Hashimoto, Y., Ishizone, H. and Ogura, M.. (1980) Periandrin II and IV, triterpene glycosides from Periandra dulcis. Phytochemistry 19, 2411.

    Article  Google Scholar 

  • Hashimoto, Y., Ogura, M., and Ishizone, H. (1982a) Periandrin extracted from plants of the genus Periandra. U.S. Patent 4,320,225 (March 16, 1982 ).

    Google Scholar 

  • Hashimoto, Y., Ohta, Y., Ishizone, H., Kuriyama, M., and Ogura, M. (19826) Periandri III, a novel sweet triterpene glycoside from Periandra dulcis. Phytochemistry 21 2335–2337.

    Google Scholar 

  • Hashimoto, Y, Ishizone, H., Suganuma, M., Ogura, M., Nakatsu, K. and Yoshioka, H. (1983) Periandrin I, a sweet triterpene-glycoside from Periandra dulcis. Phytochemistry 22, 259–264.

    Article  Google Scholar 

  • Helgren, F.J. (1957) U.S. Patent 2,803,551 (to Abbott Laboratories) August 20, 1957.

    Google Scholar 

  • Higginbotham, J.D. and Hough, C.A.M. (1977) Useful taste properties of amino acids and proteins. In Sensory Properties of Foods, eds G.C. Birch, J.G. Brennan and K.J. Parker, Applied Sciences, London, pp. 129–149.

    Google Scholar 

  • Higginbothan, J., Lindley, M., Stephens, P. (1981) Flavour potentiating properties of thalin sweetener (Thamatin), in The Quality of Foods and Beverages, G. Charlambous and G. E. Inglett, eds., Academic Press, New York.

    Google Scholar 

  • Higginbothan, J.D. (1983) Protein sweeteners in Developments in Sweeteners-2, T.H. Grenby, K.J. Parker, and M.G. Lindley, eds., Applied Science Publ., London.

    Google Scholar 

  • Homier, B.E., (1984) Aspartame: implications for the food scientist in Aspartame, Physiology and Biochemistry, L.D. Stegink and L. J. Filer, Jr., Eds., Marcel Dekker, Inc., New York, N. Y., pp. 247–262.

    Google Scholar 

  • Horowitz, R.M., and Gentili, B. (1963) Dihydrochalcone derivatives and their use as sweetening agents. U.S. Patent 3,087,821 (April 30, 1963 ).

    Google Scholar 

  • Horowitz, R.M. (1964) Relations between the taste and structure of some phenolic glycosides, in Biochemistry of Phenolic Compounds, Harborne, J.B., Ed., Academic Press, New York, N.Y., p. 545–571.

    Google Scholar 

  • Horowitz, R.M. and Gentili, B. (1969) Taste and structure in phenolic glycosides, J. Agric. Food Chem. 17, 696–700.

    Article  Google Scholar 

  • Horowitz, R.M., and Gentili, B. (1974) Dihydrochalcone sweeteners, in Symposium: Sweeteners, Inglett, G.E., Ed., Avi Publ., Westport, Conn., Chapter 16.

    Google Scholar 

  • Horowitz, R.M. (1986) Dihydrochalcone sweeteners from citrus flavanones, in Alternate Sweeteners, O’Brien-Nabors, L. and Gelardi, R.C., Eds., Marcel Dekker, Inc., New York, N.Y. Chapter 7.

    Google Scholar 

  • Hough, C.A.M. and Edwardson, J. A. (1978) Antibodies to thaumatin as a model of the sweet taste receptor. Nature 271, 381–383.

    Article  Google Scholar 

  • Hudson, G. and Biemann, K. (1976) Mass Spectrometric sequencing of proteins: the structure of subunit I of monellin Biochem. Biophys. Res. Comm. 71, 212–220.

    Article  Google Scholar 

  • Hyvonen, L. and Koivistoinen, P., (1982), Fructose in food systems, in Nutritive Sweeteners, G.G. Birch and K.J. Parker, Eds., Applied Science Publishers, Englewood, N.J., pp. 135–137.

    Google Scholar 

  • Iacobucci, G.A., Sweeney, J.G., and King III, J.G. (1988) Intensely sweet L-aspartyl-3(bicycloalkyl)-L-alanine alkyl esters, U.S. Patent 4,788,069 (to the Coca Cola Company) November 29, 1988.

    Google Scholar 

  • Inglett, G.E., Krbechek, L., Dowling, B., and Wagner, R. (1969) Dihydrochalcone sweeteners–sensory and stability evaluation. J. Food Sci. 34, 101–103.

    Article  Google Scholar 

  • Iyengar, B., Smits, P., van der Ouderaa, F., van der Wel, H. and van Browersharen, J. (1979) Eur. J. Biochem, 96, 193–204.

    Article  Google Scholar 

  • Jizba, J., and Herout, V. (1967) Plant substances XXVI. Isolation of constituents of common polypody rhizomes (Polypodium vulgare L.). Collect. Czech. Chem. Common. 32, 2867–2874.

    Article  Google Scholar 

  • Jizba, J., Dolejs, L., Herout, V., and Sorm, F. (1971) Structure of osladin-the sweet principle of the rhizomes of Polypodium vulgare L., Tetrahedron Lett., 1329–1332.

    Google Scholar 

  • Kamiya, S., Konishi, F., and Esaki, S. (1979) Synthesis and taste of some analogs of stevioside. Agric. Biol. Chem. 43, 1863–1867.

    Article  Google Scholar 

  • Kang, C.-H. (1988) Structural and biochemical studies of intensely sweet molecules (Ph. D. dissertation) University of California at Berkeley, May, 1988.

    Google Scholar 

  • Kasai, R., Hirono, S., Chou, W.-H., Tanaka, O., and Chen, F.-H. (1988) Sweet dihydroflavonol rhamnoside from leaves of Engelhardtia chrysolepis, a Chinese folk medicine, Hung-qi. Chem. Pharm. Bull. 36, 4167–4170.

    Article  Google Scholar 

  • Kasai, R., Kaneda, N., Tanaka, O., Yamasaki, K, Sakamoto, I., Morimoto, K., Okada, S., Kitahata, S., and Furukawa, H., (1981) Sweet dierpene-glycosides of leaves of Stevia rebaudiana bertoni-synthesis and structure-sweetness relationship of rebaudiosides-A,-D,E and their related glycosides. J. Chem. Soc. of Japan, Chem. Ind. Chem., 726–735.

    Google Scholar 

  • Kasai, R., Matsumoto, K., Nie, R-L., Morita, T., Awazu, A., Zhou, J., and Tanaka, O. (1987) Sweet and bitter cucurbitane glycosides from Hemsleya Carnosiflora. Phytochemistry 26, 1371–1376.

    Article  Google Scholar 

  • Kim, J., Pezzuto, J.M., Soejarto, D.D., Lang, F.A., and Kinghorn, A.D. (1988) Polypodoside A, an intensely sweet constituent of the rhizomes of Polypodium Glycyrrhiza. J. of Nat. Products 51, 1166–1172.

    Article  Google Scholar 

  • Kim, J., and Kinghorn, A.D. (1989). Further steroidal and flavonoid constituents of the sweet plant, Polypodium Glycyrrhiza. Phytochemistry 28, 1225–1228.

    Article  Google Scholar 

  • Kim, S.-H., Kang, C.-H., Kim, R., Chu, J.M., Lee, Y.-B. and Lee, T.-K. (1989) Redesigning a sweet protein: increased stability and renaturability. Protein Engineering 2, 571–575.

    Article  Google Scholar 

  • Kinghorn, A.D. and Soejarto, D.D. (1986) Sweetening agents of plant origin. CRC Critical Reviews in Plant Sciences 4, 79–120.

    Article  Google Scholar 

  • Kinghorn, A.D., Compadre, C.M., and Pezzuto, J.M. (1989). Low cariogenic sweetening agents. U.S. Patent 4,808,409 (to University of Illinois), February 28, 1989.

    Google Scholar 

  • Kitahata, S., Ishikawa, H., Miyata, T., and Tanaka, O. (1989a) Production of rubososide derivatives by transgalactosylation of various a-galactosidases. Agric. Biol. Chem. 53, 2929–2934.

    Article  Google Scholar 

  • Katahata, S., Ishikawa, H., Miyata, T., and Tanaka, O. (1989b) Production of rubusoside derivatives by transgalactosylation of various ß-galactosidases. Agric. Biol. Chem. 53, 2923–2928.

    Article  Google Scholar 

  • Kobayashi, M., Horikawa, S., Degrandi, I.H., Ueno, J., Mitsuhashi, H. (1977) Dulcosides A and B, new diterpene glycosides from Stevia rebaudiana. Phytochemistry 16, 1405–1408.

    Article  Google Scholar 

  • Krbechek, L., Inglett, G., Holik, M., Dowling, B., Wagner, R. and Riter, R. (1968) Dihydrochalcones. Synthesis of potential sweetening agents. J. Agric. Food Chem. 16, 108–112.

    Article  Google Scholar 

  • Kusama, S., Kusakabe, I., Nakamura, Y., Eda, S., and Murakami, K. (1986) Transglucosylation into stevioside by the enzyme system from Streptomyces sp. Agric. Biol. Chem. 50, 2445–2451.

    Article  Google Scholar 

  • Lee, C.-H (1975) Intense sweetener from Lo Han Kuo (Momordica grosvenori). Experimentia 31, 533–534.

    Article  Google Scholar 

  • Lee, J.H., Weickham, J.L., Kodiuri, R.R., Ghosh-Dasidar, P., Saito, K., Blair, L.C., Date, T., Lai, J.S., Holleberg, S.M. and Kendall, R.L. (1988) Expression of synthetic thaumatin genes in yeast. Biochemistry 27, 5101–5107.

    Article  Google Scholar 

  • Lythgoe and Trippett, (1950) The consitution of the dissacharide of glycyrrhinic acid. J. Chem. Soc., 1983–1990.

    Google Scholar 

  • Machado, A. (1941) Chemical study of Brazilian licorice. Rev. Soc. Brasil. Quim. 10, 101Maruzen Kasei Company Ltd., Onomichi, Japan (1980) Utilization of stevia extracts to food industry (Internal Publication).

    Google Scholar 

  • Mazur, R.H., Schlatter, J.M., and Goldkamp, A.H (1969) Structure-taste relationships of some dipeptides. J. Am. Chem. Soc. 91, 2684–2691.

    Article  Google Scholar 

  • Meilgaard, M., Vance Civile, G., and Carr, B.T., (1987) Sensory evaluation techniques, Volume II, CRC Press, Inc., Boca Raton, Fla., pp. 5–6.

    Google Scholar 

  • Merck Index, (1983) Tenth Edition, M. Windholz, Ed., Merck and Co., Inc., Rhaway, N.J., 7029, p. 1030.

    Google Scholar 

  • Mikulec, R. (1990) The NutraSweet Company, Mount Prospect, IL. Unpublished Results.

    Google Scholar 

  • Mitoma, C., Acton, E.M., DeGraw, J.I., and Thomas, D.W. (1985) Metabolic and toxicologic study of an artificial sweetener, oxime V. Drug and Chemical Toxicology 8, 195–206.

    Article  Google Scholar 

  • Mizutani, K., Miyata, T., Kasai, R., Tanaka, O., Ogawa, S., and Doi, S. (1989) Study on improvement of sweetness of steviol bisglycosides: selective enzymic transglucosylation of the 13–0-glycosyl moiety. Agric. Biol. Chem. 53, 395–398.

    Article  Google Scholar 

  • Morris, J.A. and Cagan, R.H. (1972) Purification of monellin, sweet principal in Discoreophyllm cuminsii. Biochim. Biophys. Acta 261, 114–122.

    Article  Google Scholar 

  • Morris, R.N., Cagan, R.H., Martenson, R.E. and Deibler, G. (1978) Methylation of the lysine residues of monellin. Proc. Soc. Exp. Biol. Med. 157 194–199.

    Article  Google Scholar 

  • Moskowitz, H.R. (1983) Product Testing and Sensory Evaluation of Foods, Food and Nutrition Press, Inc., Westport, Conn., pp. 110–120.

    Google Scholar 

  • Nanayakkara, N.P.D., Hussain, R.A., Pezzuto, J.M., Soejarto, D.D., and Kinghom, A.D. (1988) An intensely sweet dihydroflavonol derivative based on a natural product lead compound. J. Med. Chem. 31, 1250–1253.

    Article  Google Scholar 

  • Nofre, C. and Tinti, J.M. (1987) Sweetening agents, U.S. Patent 4,645,678 (to Universite Claude Bernard, Lyon, France) February 24, 1987.

    Google Scholar 

  • NutraSweet Technical Applications Manual (1987) Section I, p.5, The NutraSweet Company, 1751 West Lake Cook Road, Deerfield, Il.

    Google Scholar 

  • O’Brien-Naors, L. and Inglett, G.E. (1982) In Nutritive Sweeteners, G.G. Birch and K.J. Parker, eds. Applied Science Publishers, Englewood, N.J., pp. 311–313.

    Google Scholar 

  • Ogata, C. (1987) X-ray crystal structure determination of monellin, an intensely sweet protein (ph.D. dissertation) University of California at Berkeley, December 1987.

    Google Scholar 

  • Ogata, C., Hatada, M., Tomlinson, G., Shin, W.-C. and Kim, S.-H (1987) Crystal structure of the intensely sweet protein monellin Nature (London) 328, 739–742.

    Article  Google Scholar 

  • Pecore, S., Booth, B., Walters, E., DuBois, G., Carr, B.T., Gibes, K., Brands, L., Schiffman, S., and Warwick, Z., (1989) unpublished results. The NutraSweet Company, Mount Prospect, Il. Flavor attribute intensities were estimated by a trained panel of 15–20 subjects relative to intensity standards on a scale of 0–15 for each attribute (sweet: sucrose, bitter: caffeine, salty: sodium chloride, sour: citric acid, metallic: ferrous sulfate, etc.). Data reported are mean values. Sweetness intensity (I) data were obtained at several concentrations (C) thus allowing the determination of C-I functions. Least squares curve fitting methods were used to fit the data to the Michaelis-Menton type function I = In,C/(K50+C) where I. is the maximum sweetness intensity in units of percent sucrose equivalence and K50 is the concentration which results in a half-maximal sweetness intensity.

    Google Scholar 

  • Pezzuto, J.M., Compadre, C.M., Swanson, S.M. Nanayakkara, N.P.D., and Kinghorn, A.D., (1985) Metabolically activated steviol, the aglycone of stevioside, is mutagenic. Proc. Natl. Acad. Sci. USA 82, 2478–2482.

    Article  Google Scholar 

  • Phillips, K.C., (1987) Stevia: steps in developing a new sweetener, in Developments in Sweeteners-3, T.H. Grenby, Ed. Elsevier Applied Science, New York, N.Y., pp. 1–43.

    Google Scholar 

  • Reisch, J., and Dawidar, A.M. (1978) Detection of osladin in the aerial parts of Polypodium vulgare L., Sci. Pharm. 46, 281–283.

    Google Scholar 

  • Rennie, E.H., (1886) Glycyphyllin, the sweet principle of Smilax glycyphylla. J. Chem. Soc. 49, 857–864.

    Article  Google Scholar 

  • Richardson, M., Valdes-Rodriguez, S. and Bianco-Labra, A. (1987) A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature 327, 432–434.

    Article  Google Scholar 

  • Roak-Foltz, R., and Leveille, G.A., (1984) Projected aspartame intake: daily ingestion of aspartic acid, phenylalanine and methanol, In Aspartame Physiology and Biochemistry, Stegink, L.D., and Filer, Jr., L.J. Eds., Marcel Dekker, Inc., New York, N.Y., Chapter 9, pp. 201–205.

    Google Scholar 

  • Ronk, R.J. (1978), Regulatory Constraints on Sweetener Use, in Sweeteners and Dental Caries, Shaw, J.H., and Roussos, G.G., Eds., Information Retrieval Inc., Washington D.C., pp. 131–144.

    Google Scholar 

  • Russell, D.R. and Bennet, G.N. (1982) Construction and analysis of in vivo activity of E. coli promoter hybrids and promoter mutants that alter the -35 and -10 spacing. Gene 20, 231–235.

    Article  Google Scholar 

  • Schultz, H.W. 1981. Food Law Handbook, Avi Publishing Company, Inc., Westport, Conn.

    Google Scholar 

  • Soejarto, D.D., Kinghom, A.D. and Farnsworth, N.R. (1982) Potential sweetening agents of plant origin III. Organoleptic evaluation of Stevia leaf herbarium samples for sweetness. Journal of Natural Products 45, 590–599.

    Article  Google Scholar 

  • Stegink, L.D. and Filer, L.J., Jr. (1984) Aspartame Physiology and Biochemistry,L.D. Stegink and L.J. Filer, Jr., Eds. Marcel Dekker, Inc., New York, N.Y, pp 29–199 and 289–653.

    Google Scholar 

  • Stone, H., Sidel, J.L., Oliver, S., Woolsey, A., and Singleton, R. (1974) Sensory evaluation by quantitative descriptive analysis. Food Technology 28, 24–34.

    Google Scholar 

  • Suzuki, H, Ikeda, T., Matsumoto, T., and Noguchi, M. (1977) Isolation and identification of phyllodulcin and skimmin from the cultured cells of amacha (Hydrangea macrophylla Seringe Var. Thumbergii Makino), Agric. Biol. Chem. 41, 719–720.

    Article  Google Scholar 

  • Tachibana, Y., Hashimoto, Y., Hagiwara, Y., Konishi, T, and Kurokawa, N. (1974) The auantitative analysis of phyllodulcin in `Amacha’ (Sweet Hydrangea) by means of thin-layer chromatography, Yakugaku Zasshi 94, 1167–1169

    Google Scholar 

  • Tahara, A., Nakata, T., and Ohtsuka, Y. (1971) New type of compound with strong sweetness. Nature (London) 233, 619.

    Article  Google Scholar 

  • Takemoto, T., Arihara, S., Nakajima, T. and Okuhira, M. (1983a) Studies on the constituents of fructus momordicae. I. On the sweet principle. Yakugaku Zasshi 103, 1151–1154.

    Google Scholar 

  • Takemoto, T., Arihara, S., Nakajima, T., and Okuhira, M. (1983b) Studies on the constituents of fructus momordicae. II. structure of sapogenin. Yakugaku Zasshi 103, 1155–1166.

    Google Scholar 

  • Takemoto, T., Arihara, S., Nakajima, T., and Okuhira, M. (1983c) Studies on the constituents of fructus momordicae. III. structure of mogrosides. Yakugaku Zasshi 103, 1167–1173.

    Google Scholar 

  • Takeuchi, N., Murase, M., Ochi, K., and Tobinaga, S., (1980) Biogenetic-type synthesis of (±) phyllodulcin, a sweet principle of Hydrangea serrata Seringe var. thunbergii Sugimoto. (Studies on the (3-carbonyl compounds connected with the ß-polyketides. VI.). Chem. Pharm. Bull., 28, 3013–3019.

    Article  Google Scholar 

  • Tanaka, T., Yamasaki, K., Kohda, H., Tanaka, O. and Mahato, S.B. (1980) Dihydrochalcone-glucosides as sweet principles of Symplocos ssp. Planta Med. (Suppl.) 81–83.

    Google Scholar 

  • Tanaka, T., Kawamura, K., Kohda, H., Yamasaki, K., and Tanaka, O. (1982) Glycosides of the leaves of Symplocos spp. (Symplocaceae), Chem. Pharm. Bull. 30, 2421–2423.

    Google Scholar 

  • Tanaka, T., Tanaka, O., Lin, Z.-W., Zhou, J., and Ageta, H. (1983) Sweet and bitter glycosides of the Chinese plant drug, Bai-Yun-Shen (Roots of Salvia Digitaloides). Chem. Pharm. Bull. 31, 780–783.

    Article  Google Scholar 

  • Tanaka, T., Kohda, H., Tanaka, O., Chen, F.-H., Chou, W.-H., and Leu, J.- L. (1981) Rubusoside (3-D-glucosyl ester of 13-O13-D-glucosyl-steviol), a sweet principle of Rubus chingii Hu (Rosaceae). Agric. Biol. Chem. 45, 2165–2166.

    Article  Google Scholar 

  • Tanaka, T., Tanaka, O., Lin, Z.-W.., and Zhou, J., (1985) Sweet and bitter principles of the Chinese plant drug, Bai-Yun-Shen: revision of the assignment of the source plant and isolation of two new diterpene glycosides. Chem. Pharm. Bull. 33, 4275–4280.

    Article  Google Scholar 

  • Theerasilp, S. and Kurihara, Y. (1988) Purification and structure characterization of curculin, a new type of sweet protein having taste-modifying action. 22nd Japanese Symposium on Taste and Smell (JASTS XXII), Fukuoka, Japan. Abstract: Chemical Senses 1989, 14, 319–320.

    Google Scholar 

  • Tsau, J.H., and Young, J.G., (1987) Heat stabilized sweetener composition containing APM, U.S. Patent 4,704,288 (to The NutraSweet Company) November 3, 1987.

    Google Scholar 

  • Tunmann, P., and Schehrer, F.K., (1959) Betrag Zur Chemischen Konstitution des Bryodulcosides. 3. Mitteilung über Inhaltstoffe der Wurzeln von Bryonia dioica Jacq., Arch. Pharm. 292, 745–748.

    Article  Google Scholar 

  • Tunmann, P., and Stapel G., (1966a) Ãœber das Bryodulcosid. 8. Mitt. über Inhaltstoffe der Wurzel von Bryonia dioica Jacq. Arch. Pharm. 299. 596–598.

    Article  Google Scholar 

  • Tunmann, P, Gemer, W., and Stapel G. (1966b) Konstitution des Bryodulcosigenins. Chem. Ber. 694, 162-

    Google Scholar 

  • US Food and Drug Administration, Bureau of Foods (1982) Toxicological Principles for the Safety Assessment of Direct Food Additives and Color Additives used in Food. pp. 1–19.

    Google Scholar 

  • van der Wel, H. (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from thaumatococcus danielli Benth Eur. J. Biochem. 31, 221–225.

    Article  Google Scholar 

  • van der Wel, H., and Arvidson (1978) Qualitative psychphysical studies on the gustatory effects of the sweet tasting proteins yhaumatin and monellin. Chem. Senses and Flavor 3, 291–299.

    Article  Google Scholar 

  • van der Wel, H. and Bel (1978) Structural investigation of the sweet-tasting proteins thaumatin and monellin by immunological studies. Chem. Senses and Flavor 3, 99–104.

    Article  Google Scholar 

  • van der Wel, H. and Bel (1980) Enzymatic properties of the sweet-tasting proteins thaumatin and monellin after partial reduction. Eur. J. Biochem. 104, 413–418.

    Article  Google Scholar 

  • van der Wel, H. and Bel, W.J. (1976) Effects of arcetylation and methylation on the sweetness intensity of thaumatin I. Chem. Senses and Flavor 2, 211–218.

    Article  Google Scholar 

  • van der Wel, H., van der Heijen, A. and Peer, H.G. (1987) Sweeteners. Food Reviews International 3 193–268.

    Article  Google Scholar 

  • van der Wel, H., Larson, G., Hladik, A., Hladik, C.M., Hellekant, G. and Glaser, D. (1989) Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana bailton. Chemical Senses 14, 75–79.

    Article  Google Scholar 

  • Verlander, M.S., Fuller, W.D., and Goodman, M. (1986) 1,1-Diamino-alkane derived sweeteners, U.S. Patent 4, 571,345 (to Cumberland Packing Corp.) February 18, 1986.

    Google Scholar 

  • Vettorazzi, G., (1989) Statutory and regulatory requirements. Supranational bodies. Role of international scientific bodies, in International Food Regulation Handbook, Middlekauf, R.D., and Shubik, P., Eds., Marcel Dekker, Inc., New York, N.Y., pp. 481–505.

    Google Scholar 

  • Vignais, P.V., Duee, E.D., Vignais, P.M., and Huet, J. (1966) Effects of atractyligenin and its structural analogues on oxidative phosphorylation and on the translocation of adenine nucleotides in mitochondria. Biochimica et Biophysica Acta 118, 465–483.

    Article  Google Scholar 

  • Weickman J. L. et al. (1989) in Progress in Sweeteners, T.H. Grenby, ed., Elsevier Applied Sciences, New York, 47–69.

    Google Scholar 

  • Wingard, Jr., R.E., Crosby, G.A., and DuBois, G.E., (1978) Non-absorbable sweeteners, or eating the cake without having it. Chemtech 8, 616–621.

    Google Scholar 

  • Wingard, Jr., R.E., Brown, J.P., Enderlin, F.E., Dale, J.A., Hale, R.L., and Seitz, C.T., (1980) Intestinal degradation and absorption of the glycosidic sweeteners stevioside and rebaudioside A. Experientia 36, 519–520.

    Article  Google Scholar 

  • Wiseman, J.J., and McDaniel, M.R., (1989) Modification of fruit flavors by aspartame and sucrose. Presented at the Institute of Food Technology Meeting, Chicago, IL.

    Google Scholar 

  • Yamashita, H., Theerasilp, S., and Kurihara, Y., (1989) Purification and partial structure characterization of a new type of sweet protein having taste-modifying action, Curculin. Xth International Symposium on Olfaction and Taste, Oslo, Norway, Abstract p. 77.

    Google Scholar 

  • Yamato, M., Hashigaki, K., Honda, E., Sato, K., and Koyama, T., (1977) Chemical structure and sweet taste of isocoumarin and related compounds. VII. Chem. Pharm. Bull. 25, 695–699.

    Article  Google Scholar 

  • Yamato, M., and Hashigaki, K., (1979) Chemical structure and sweet taste of isocoumarins and related compounds. Chemical Senses and Flavour 4, 35–47.

    Article  Google Scholar 

  • Zanno, P.R., Barnett, R.E., and Roy, G.M. (1988) L-Aminodicarboxylic acid esters, U.S. Patent 4,766,246 (to General Foods Corporation) August 23, 1988.

    Google Scholar 

  • Zhong, H., (1986) In Proceedings of the Munchen-Shanghai Symposium on Peptide and Protein Chemistry, Schloss Ringberg am Tegernsee, W. Germany, p. 109.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, SH., Dubois, G.E. (1991). Natural high potency sweeteners. In: Marie, S., Piggott, J.R. (eds) Handbook of Sweeteners. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5380-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5380-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5382-0

  • Online ISBN: 978-1-4757-5380-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics