Skip to main content

The Role of Volatile Compounds and Polyphenols in Olive Oil Sensory Quality

  • Chapter
Handbook of Olive Oil

Abstract

Sensory quality plays an important role in the acceptability of foodstuffs. Color and flavor are the main sensations that contribute to their acceptability by consumers. Flavor is a complex sensation consisting primarily of smell and taste, but it is complemented by tactile and kinesthetic sensations (Reineccius 1993). It is evoked by stimulation of all oral and nasal chemosensory systems because the brain blends the information from the individual systems into a single perceptual gestalt (Maruniak 1988). The role of flavor in the food supply is critical and beneficial; it is vital in the control of food recognition, selection, and acceptance. Flavor also plays a role in nutrition as it is partly responsible for aiding the digestion of food in humans (Ensor 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agro–Industry Research (AIR) (1999). Final Report of European Research ProjectAlR3–CT94–1967. Olive oil flavour and aroma: Biochemistry and chemistry of sensory factors affecting consumer appreciation and their analysis by artificial intelligence. The Commission of the European Communities.

    Google Scholar 

  • Akasbi, M., Shoeman, D. W. and Csallany, A. S. (1993). HPLC of selected phenolic compounds in olive oils. JAm Oil Chem Soc 70, 367–370.

    Article  CAS  Google Scholar 

  • Alberola, J. and Izquierdo, L. (1979). La fracción aromatica del zumo de naranja. II. Analisis del espacio de cabeza. RevAgroquim Technol Aliment 19, 327–337.

    CAS  Google Scholar 

  • Alloggio, A., Caponio, E and De Leonardis, T. (1996). Influenza delle tecniche di preparazione della pasta di olive sulla qualita dell’olio. Nota I. Profilo quali-quantitativo delle sostanze fenoliche, mediante HPLC, in olio d’oliva vergine della cv Ogliarola Salentina. Riv Ital Sostanze Grasse 73, 355–360.

    CAS  Google Scholar 

  • Almarcha, M. and Rovira, J. (1994). Microwave-guide thermal desorption in food analysis. Tech Lab 16, 699–703.

    CAS  Google Scholar 

  • Amerine, M. A. and Ough, C. S. (1974). Wine and Must Analysis, p. 66. New York: John Wiley and Sons. Amiot, M. J., Fleuriet, A. and Macheix, J. J. (1986). Importance and evolution of phenolic compounds in olive during growth and maturation. JAgric Food Chem 34, 823–826.

    Google Scholar 

  • Amiot, M. J., Fleuriet, A. and Macheix, J. J. (1989). Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28, 67–69.

    Article  CAS  Google Scholar 

  • Andreoni, N. and Fiorentini, R. (1995). Determinazione di composti fenolici in oli di oliva. Riv Ital Sostanze Grasse 72, 163–164.

    CAS  Google Scholar 

  • Angerosa, E, et al. (1995). GC-MS evaluation of phenolic compounds in virgin olive oil. JAgric Food Chem 43, 1802–1807.

    Article  CAS  Google Scholar 

  • Angerosa, E, et al. (1996a). Characterization of phenolic and secoiridoid aglycons present in virgin olive oil by gas chromatography-chemical ionization mass spectrometry. J Chromatogr 736, 195–203.

    Article  CAS  Google Scholar 

  • Angerosa, E, et al. (1996b). Sensory evaluation of virgin olive oils by artificial neural network processing of dynamic head-space gas chromatographic data. JSci Food Agric 72, 323–328.

    Article  CAS  Google Scholar 

  • Angerosa, E and Di Giovacchino, L. (1996). Natural antioxidants of virgin olive oil obtained by two and three-phase centrifugal decanters. Grasas Aceites 47, 247–254.

    Article  CAS  Google Scholar 

  • Angerosa, E, Lanza, B and Marsilio, V. (1996). Biogenesis of fusty defect in virgin olive oils. Grasas Aceites 47, 142–150.

    Article  CAS  Google Scholar 

  • Aparicio, R., et al. (1994). Relationship between COI test and other sensory profiles by statistical procedures. Grasas Aceites 45, 26–41.

    Article  Google Scholar 

  • Aparicio, R., Calvente, J. J. and Morales, M. T. (1996). Sensory authentication of European extra-virgin olive oil varieties by mathematical procedures. J Sci Food Agric 72, 435–447.

    Article  CAS  Google Scholar 

  • Aparicio, R. and Morales, M. T. (1994). Optimization of a dynamic headspace technique for quantifying virgin olive oil volatiles. Relationship between sensory attributes and volatile peaks. Food Qual Pref 5, 109–114.

    Article  Google Scholar 

  • Aparicio, R. and Morales, M. T. (1995). Sensory wheels: a statistical technique for comparing QDA panels. Application to virgin olive oil. JSci FoodAgric 67, 247–257.

    Article  CAS  Google Scholar 

  • Aparicio, R. and Morales, M. T. (1998a). Characterization of olive ripeness by green aroma compounds of virgin olive oil. JAgric Food Chem 46, 1116–1122.

    Article  CAS  Google Scholar 

  • Aparicio R. and Morales M. T. (1998b). Relationship between phenolic compounds and sensory attributes of virgin olive oil. Internal Report IGS-PH-120398, Instituto de la Grasa, Seville, Spain. Aparicio, R., Morales, M. T. and Alonso, M. V. (1996). Relationship between volatile compounds and sensory attributes of olive oils by the sensory wheel. JAm Oil Chem Soc 73, 1253–1264.

    Article  Google Scholar 

  • Aparicio, R., Morales, M. T. and Alonso, V. (1997). Authentication of European extra-virgin olive oils by their chemical compounds, sensory attributes and consumers’ attitudes. JAgric Food Chem 45, 1076–1083.

    Article  CAS  Google Scholar 

  • Arrigo, L. and Rondinone, R. (1995). I micronutrienti eu-ossidanti nell olio di oliva. Riv Ital Sostanze Grasse 72, 11–14.

    CAS  Google Scholar 

  • Association of Official Agricultural Chemists (AOAC) (1960). Official Methods of Analysis, 9th ed., pp. 111–144. Edited by W. Horwitz. Washington, DC: Association of Official Agricultural Chemists.

    Google Scholar 

  • Baldioli, M., et al. (1996). Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. JAm Oil Chem Soc 73, 1589–1593.

    Article  CAS  Google Scholar 

  • Bate-Smith, E. C. (1973). Haemanalysis of tannins: the concept of relative astringency. Phytochemistry 12, 907–912.

    Article  CAS  Google Scholar 

  • Bello, A. C. (1992). Rapid isolation of the sterol fraction in edible oils using a silica cartridge. JAOAC Int 75, 1120–1123.

    CAS  Google Scholar 

  • Benkler, K. F. and Reineccius, G. A. (1980). Flavor isolation from fatty foods via solvent extraction and membrane dialysis. JFood Sci 45, 1084–1085.

    Article  CAS  Google Scholar 

  • Berra, B., et al. (1995). Antioxidant properties of minor polar components of olive oil on the oxidative processes of cholesterol in human LDL. Riv Ital Sostanze Grasse 72, 285–288.

    CAS  Google Scholar 

  • Betti, A., Coppi, S. and Bighi, C. (1985). Pre-concentration of organic pollutants. Potential interference from the use of styrene copolymer adsorbents. J Chromatogr 349, 181–187.

    Article  CAS  Google Scholar 

  • Bianchi, G. and Pozzi, N. (1994). 3,4-dihydroxyphenylglycol, a major C6–C2 phenolic in Olea europaea fruits. Phytochemistry 35, 1335–1337.

    Google Scholar 

  • Bianco, A., Lo Scalzo, R. and Scarpati, M. L. (1993). Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry 32, 455–457.

    Article  CAS  Google Scholar 

  • Bocci, F., Frega, N. and Lercker, G. (1992). Preliminary research on the volatile component of extra virgin olive oil. Riv Ital Sostanze Grasse 69, 611–613.

    CAS  Google Scholar 

  • Booker, J. L. (1985). Collecting volatile compounds by simple diffusion: an alternative to purge-andtrap. J Chromatogr Sci 23, 415–416.

    Article  CAS  Google Scholar 

  • Cantarelli, C. (1961). Polyphenols in the fruit and in olive oil. Riv Ital Sostanze Grasse 38, 69–72. Catalano, D. and Caponio, E. (1996). Machines for olive oil paste preparation producing quality virgin olive oil. Lipid 98, 408–412.

    Google Scholar 

  • Ceccon, L. (1986). La frazione lipidica nella caratterizzazione merceologica dei formaggi. Acidi grassi liberi volatili. Nota IV. Riv Ital Sostanze Grasse 63, 551–554.

    Google Scholar 

  • Christie, W. W. (1992). Solid-phase extraction columns in the analysis of lipids. In Advances in Lipid Methodology-One, pp. 1–17. Edited by W. W. Christie. Ayr, Scotland: Oily Press.

    Google Scholar 

  • Cichelli, A. and Solinas, M. (1984). I composti fenolici delle olive e dell’olio di oliva. Riv Merceol 23, 55–65.

    CAS  Google Scholar 

  • Cinquanta, L., Esti, M. and La Notte, E. (1997). Evolution of phenolic compounds in virgin olive oil during storage. JAm Oil Chem Soc 74, 1259–1264.

    Article  CAS  Google Scholar 

  • Clark, R. G. and Cronin, D. A. (1975). The use of activated charcoal for the concentration and analysis of headspace vapours containing food aroma volatiles. JSci FoodAgric 26, 1615–1624.

    Article  CAS  Google Scholar 

  • Cortesi, N., et al. (1995). I componenti minori polari degli oli vergini di oliva: ipotesi di struttura mediante LC-MS. Riv Ital Sostanze Grasse 72, 241–251.

    CAS  Google Scholar 

  • Cortesi N., Azzolini M. and Rovellini, R. (1995). Dosaggio dei componenti minori polari (CMP) in oli vergini di oliva. Riv Ital Sostanze Grasse 72, 333–337.

    CAS  Google Scholar 

  • Cortesi, N. and Fedeli, E. (1983). I composti polari di oli di oliva vergine. Nota I. Riv Ital Sostanze Grasse 60, 341–351.

    CAS  Google Scholar 

  • Cortesi, N., Fedeli, E. and Tiscornia, E. (1978). Indagine sulla composizione di insaponificabili di oli vegetali mediante HPLC. Riv Ital Sostanze Grasse 55, 168–175.

    CAS  Google Scholar 

  • Cortesi, N., Fedeli, E. and Tiscomia, E. (1985). I componenti polari degli oli di oliva. Possibili utilizzazioni analitiche. Nota I. Riv Ital Sostanze Grasse 62, 281–286.

    CAS  Google Scholar 

  • Cortesi, N., Ponziani, A. and Fedeli, E. (1981). Caratterizzazione degli oli vergini e raffinati mediante HPLC dei componenti polari. Riv Ital Sostanze Grasse 58, 108–114.

    CAS  Google Scholar 

  • Crisp, S. (1980). Solid sorbent gas samplers. Ann Occup Hyg 23, 47–76.

    Article  CAS  Google Scholar 

  • Davis, P. L. (1970). A simple method to prevent loss of volatile during headspace analysis. J Chromatogr Sci 8, 423–424.

    Article  CAS  Google Scholar 

  • Del Barrio, A., et al. (1983). Aplicación de la cromatografia gas-liquido, técnica de espacio de cabeza, al problema del atrojado de los aceites de oliva. II. Grasas Aceites 34, 1–6.

    Google Scholar 

  • Del Barrio, A., Gutiérrez, E and Gutiérrez, R. (1981). Aplicación de la cromatografia gas-liquido, técnica de espacio de cabeza, al problema del atrojado de los aceites de oliva. I. Grasas Aceites 32, 155–161.

    Google Scholar 

  • Di Giovacchino, L. and Serraiocco, A. (1995). Influence of processing methods of olives on the composition of the headspace of oils. Riv Ital Sostanze Grasse 72, 443–450.

    Google Scholar 

  • Dobarganes, M. C., Olías, J. M. and Gutiérrez, R. (1980). Componentes volatiles en el aroma del aceite de oliva virgen. III. Reproducibilidad del método utilizado para su aislamiento, concentración y separación. Grasas Aceites 31, 317–321.

    Google Scholar 

  • Dobarganes, M. C., Rios, J. J. and Pérez-Camino, M. C. (1986). Relaciones entre la composición de aceites vegetales y los componentes volatiles producidos durante su termoxidación. Grasas Aceites 37, 61–67.

    CAS  Google Scholar 

  • Dressler, M. (1979). Extraction of trace amounts of organic compounds from water with porous organic polymers. J Chromatogr 165, 167–206.

    Article  CAS  Google Scholar 

  • Drozd, J. and Novàk, J. (1979). Headspace gas analysis by gas chromatography. J Chromatogr 165, 141–165.

    Article  CAS  Google Scholar 

  • Dupuy, H. R, et al. (1985). Direct sampling capillary gas chromatography of volatiles in vegetable oils. JAm Oil Chem Soc 62, 1690–1693.

    Article  CAS  Google Scholar 

  • Dupuy, H. R, Fore, S. P. and Goldblatt, L. A. (1971). Elution and analysis of volatiles in vegetable oils by gas chromatography. JAm Oil Chem Soc 48, 876.

    Article  CAS  Google Scholar 

  • Dupuy, H. R, Fore, S. P. and Goldblatt, L. A. (1973). Direct gas chromatographic examination of volatiles in salad oil and shortenings. JAm Oil Chem Soc 50, 340–342.

    Article  CAS  Google Scholar 

  • Ensor, D. R. (1989). The contribution of flavour chemistry to the food industry. In Flavour Chemistry of Lipid Foods, pp. 1–12. Edited by D. B. Min and T. H. Smouse. Champaign, IL: American Oil Chemists’ Society.

    Google Scholar 

  • European Communities (EC) (1991). Official Journal of the Commission of the European Communities. Regulation No. 2568/91, L248, September 5.

    Google Scholar 

  • European Communities (EC) (1995). Official Journal of the Commission of the European Communities. Regulation No. 656/95, L69, March 29.

    Google Scholar 

  • European Communities (EC) (1997). Official Journal of the Commission of the European Communities. Regulation No. 2472/97, L341, December 12.

    Google Scholar 

  • Favati, E, et al. (1995). Rapid extraction and determination of phenols in extra virgin olive oil. In Food Flavors: Generation, Analysis and Process Influence, pp. 429–452. Edited by G. Charalambous. Amsterdam: Elsevier Science.

    Google Scholar 

  • Favati, E., Caporale, G. and Bertuccioli, M. (1994). Rapid determination of phenol content in extra virgin olive oil. GrasasAceites 45, 68–70.

    Article  CAS  Google Scholar 

  • Fedeli, E. and Jacini, G. (1971). Lipid composition of vegetables oils. Adv Lipid Res 9, 335–382.

    CAS  Google Scholar 

  • Flath, R. A., Forrey, R. R. and Guadagni, D. G. (1973). Aroma components of olive oil. JAgric Food Chem 21, 948–952.

    Article  CAS  Google Scholar 

  • Flath, R. A., Sugisawa, H. and Teranishi, R. (1981). Problems in flavor research. In Flavor Research: Recent Advances, pp. 1–10. Edited by R. Teranishi, R. A. Flath and H. Sugisawa. New York: Marcel Dekker.

    Google Scholar 

  • Forcadell, M. Li., et al. (1987). Determination du tyrosol et de l’hydroxy-tyrosol dans des huiles vierges d’olive. Rev Fr Corps Gras 34, 547–549.

    CAS  Google Scholar 

  • Gariboldi, P., Jommi, G. and Verotta, L. (1986). Secoiridoids from Olea europaea. Phytochemistry 25, 865–869.

    Article  CAS  Google Scholar 

  • Gasparoli, A. and Fedeli, E. (1987). Valutazione dei componenti volatili negli oli alimentari: Un approccio alla tecnica “purgue and trap.” Riv Ital Sostanze Grasse 64, 453–460.

    CAS  Google Scholar 

  • Gasparoli, A., Fedeli, E. and Manganello, B. (1986). Olio vergine di oliva: Valutazione dei caratteri organolettici attraverso tecniche strumentali. Riv Ital Sostanze Grasse 63, 571–582.

    Google Scholar 

  • Gensic, J. L., Szuhaj, B. E and Endres, J. G. (1984). Automated gas chromatographic system for volatile profile analysis of fats and oils. JAm Oil Chem Soc 61, 1246–1249.

    Article  CAS  Google Scholar 

  • Godefroot, M., Sandra, P. and Verzele, H. (1981). New method for quantitative essential oil analysis. J Chromatogr 203, 325–335.

    Article  CAS  Google Scholar 

  • Golovnya, R. V. (1982). Some analytical problems in flavour research. J Chromatogr 251, 249–264.

    Article  CAS  Google Scholar 

  • Gourama, H. and Bullerman, L. B. (1987). Effects of oleuropein on growth and aflatoxin production by aspergillus parasiticus. Lebensm mss Technol 20, 226–228.

    CAS  Google Scholar 

  • Graciani Constante, E., Colchero Vela, C. and Vazquez Roncero, A. (1980). Estudio de los componentes polares del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). I. Cromatografia de adsorción. Grasas Aceites 31, 85–89.

    Google Scholar 

  • Graciani Constante, E. and Vazquez Roncero, A. (1980). Estudio de los componentes del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). II. Cromatografia en fase inversa. Grasas Aceites 31, 237–243.

    Google Scholar 

  • Graciani Constante, E. and Vazquez Roncero, A. (1981). Estudio de los componentes polares del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). III. Aplicación a diversos tipos de aceites Ai-genes. GrasasAceites 32, 365–371.

    Google Scholar 

  • Gutfinger, T. (1981). Polyphenols in olive oils. JAm Oil Chem Soc 58, 966–968.

    Article  CAS  Google Scholar 

  • Guth, H. and Grosch, W. (1989). 3-Methylnonane-2,4-dione: An intense odour compound formed during flavour reversion of soya-bean oil. Fat Sci Technol 91, 225–230.

    Google Scholar 

  • Guth, H. and Grosch, W. (1993). Quantitation of potent odorants of virgin olive oil by stable-isotope dilution assays. JAm Oil Chem Soc 70, 513–518.

    Article  CAS  Google Scholar 

  • Gutiérrez, R., et al. (1975). Los métodos organolépticos y cromatograficos en la valoración de las caracteristicas aromaticas del aceite de oliva virgen. Grasas Aceites 26, 21–31.

    Google Scholar 

  • Gutiérrez, R., et al. (1977). Relación entre los polifenoles y la calidad y estabilidad del aceite de oliva virgen. GrasasAceites 28, 101–106.

    Google Scholar 

  • Gutiérrez, R., et al. (1981). Componentes volatiles en el aroma del aceite de oliva virgen. V. Aceites obtenidos de frutos atrojados Grasas Aceites 32, 299–303.

    Google Scholar 

  • Gutiérrez, F., et al. (1989). Bitter taste of virgin olive oil: correlation of sensory evaluation and instrumental HPLC analysis. JFood Sci 54, 68–70.

    Article  Google Scholar 

  • Gutiérrez Rosales, E, et al. (1992). Evaluation of the bitter taste in virgin olive oil. JAm Oil Chem Soc 69, 394–395.

    Article  Google Scholar 

  • Harborne, J. B. (1989). General procedures and measurements of total phenolics. In Methods in Plant Biochemistry, pp.1–28. Edited by J. B. Harborne. Plant Phenolics, vol. 1. London: Academic Press.

    Google Scholar 

  • Hawthorne, S. B., Krieger, M. S. and Miller, D. J. (1988). Analysis of flavor and fragrance compounds using supercritical fluid extraction coupled with gas chromatography. Anal Chem 60, 472–477.

    Article  CAS  Google Scholar 

  • International Olive Oil Council (IOOC) (1996). Organoleptic Assessment of Virgin Olive Oil. COI/T.20/Document No. 1. Madrid, November 20.

    Google Scholar 

  • International Olive Oil Council (IOOC) (1997). Trade Standard Applying to Olive Oil and Olive Pomace Oil. COI/T.15/Doc. No. 2/6th Rev. Madrid, June 5.

    Google Scholar 

  • Jackson, H. W. (1981). Techniques for flavor and odor evaluation of soy oil. JAm Oil Chem Soc 58, 227–231.

    Article  CAS  Google Scholar 

  • Jackson, H. W. and Giacherio D. J. (1977). Volatiles and oil quality. JAm Oil Chem Soc 54, 458–460.

    Article  CAS  Google Scholar 

  • Jennings, W. G. and Filsoof, M. (1977). Comparison of sample preparation techniques for gas chromatographic analysis. JAgric Food Chem 25, 440–445.

    Article  CAS  Google Scholar 

  • Kallithraka, S., Bakker, J. and Clifford, M. N. (1997). Effect of pH astringency in model solutions and wines. JAgric Food Chem 45, 2211–2216.

    Article  CAS  Google Scholar 

  • Kiritsakis, A. K. (1998). Flavor components of olive oil: A review. JAm Oil Chem Soc 75, 673–681.

    Article  CAS  Google Scholar 

  • Krost, K. J., et al. (1982). Collection and analysis of hazardous organic emissions. Anal Chem 54, 810–817.

    Article  CAS  Google Scholar 

  • Kuwajima, H., et al. (1988). A secoiridoid glycoside from Olea europaea. Phytochemistry 27, 1757–1759.

    Article  CAS  Google Scholar 

  • Le Tutour, B. and Guedon, D. (1992). Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 31, 1173–1178.

    Article  Google Scholar 

  • Lewis, M. J. and Williams, A. A. (1980). Potential artefacts from using porous polymers for collecting aroma components. JSci FoodAgric 31, 1017–1026.

    Article  CAS  Google Scholar 

  • Limiroli, R., et al. (1995). 111 and 13C NMR characterization of new oleuropein aglycones. J Chem Soc Perkin Trans 1, 1519–1523.

    Google Scholar 

  • Limiroli, R., et al. (1996). 1H NMR study of phenolics in the vegetation water of three cultivars of Olea europaea. Similarities and differences. JAgric Food Chem 44, 2040–2048.

    Google Scholar 

  • Litridou, M., et al. (1997). Phenolic compounds in virgin olive oils: fractionation by solid phase extraction and antioxidant activity assessment. J Sci Food Agric 74, 169–174.

    Article  CAS  Google Scholar 

  • Macheix, J. J., Fleuriet, A. and Billot, J. (1991). Fruit Phenolics, pp. 25–26, 92. Boca Raton, FL: CRC Press.

    Google Scholar 

  • MacLeod, G. and Ames, J. M. (1986). Comparative assessment of the artefact background on thermal desorption of Tenax GC and Tenax TA. J Chromatogr 355, 393–398.

    Article  CAS  Google Scholar 

  • Mannino, S., Cosio, M. S. and Bertuccioli, M. (1993). HPLC of phenolic compounds in virgin olive oils using amperometric detection. Ital JFood Sci 4, 363–370.

    Google Scholar 

  • Mariani, C., Venturini, S. and Fedeli, E. (1990). Sulla presenza di prodotti alogenati volatili negli oli vergini di oliva. Riv Ital Sostanze Grasse 67, 239–244.

    CAS  Google Scholar 

  • Maruniak, J. A. (1988). The sense of smell. In Sensory Analysis of Foods, pp. 25–68. Edited by J. R. Piggot. London: Elsevier Applied Science.

    Google Scholar 

  • Mateos, A. and Carbonell, E. (1990). Analisis de la fracción aromatica de alimentos. Técnicas de extracción y concentración. RevAgroquim Technol Aliment 30, 431–444.

    Google Scholar 

  • Mattei, A., Stella, C. and Osti, M. (1988). Olio extra vergine di oliva e componenti polari minori: Influenza dei sistemi e delle condizioni di estrazione. Riv Ital Sostanze Grasse 65, 575–579.

    Google Scholar 

  • Mehlitz, A. and Gierschner, K. (1962). Ueber bisherige gaschromatographische Untersuchungen der Aromastoffe von Frechten. Proceedings Symposium Volatile Fruit Flavours, International Federation Fruit Juice Producers. Bern, p. 25.

    Google Scholar 

  • Mesa, J. A. G., et al. (1990). Direct automatic determination of polyphenols in olive oils in the aqueous phase of a flow-injection liquid-liquid extraction system without phase separation. Anal Chim Acta 235, 441–444.

    Article  CAS  Google Scholar 

  • Min, D. B. (1981). Correlation of sensory evaluation and instrumental gas chromatographic analysis of edible oils. JFood Sci 46, 1453–1456.

    Article  CAS  Google Scholar 

  • Min, D. B. (1983). Analyses of flavor qualities of vegetable oils by gas chromatography. JAm Oil Chem Soc 60, 544–545.

    Article  CAS  Google Scholar 

  • Min, D. B. and Wen, J. (1983). Effects of dissolved free oxygen on the volatile compounds of oils. J Food Sci 48, 1429–1430.

    Article  CAS  Google Scholar 

  • Minguez-Mosquera, M. I., Gandul-Rojas, B. and Gallardo-Guerrero, L. (1992). Rapid method of quantification of chlorophylls and carotenoids in virgin olive oil by HPLC. JAgric Food Chem 40, 60–63.

    Article  CAS  Google Scholar 

  • Montedoro, G. (1972). I costituenti fenolici presenti negli oli vergini di oliva. Sci Technol Aliment 2, 177–185.

    CAS  Google Scholar 

  • Montedoro, G. (1973). Esame analitico dei costituenti fenolici presenti nell’olio di oliva in funzione delle caratteristiche della drupa, loro ruolo nella stabilita all’ossidazione e possibile interferenza nella determinazione del numero di perossidi. In Estratto dagli Annali della Facolta di Agraria dell Universita di Perugia, XXVIII, pp. 1–19. Perugia, Italy: University of Perugia.

    Google Scholar 

  • Montedoro, G., et al. (1992a). Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. JAgric Food Chem 40, 1571–1576.

    Article  CAS  Google Scholar 

  • Montedoro, G., et al. (1992b). Simple and hydrolyzable phenolic compounds in olive oil. 2. Initial characterization of the hydrolyzable fraction. JAgric Food Chem 40, 1577–1580.

    Article  CAS  Google Scholar 

  • Montedoro, G., et al. (1993a). Simple and hydrolyzable phenolic compounds in olive oil: Note 3. Spectroscopic characterization of the secoiridoid derivatives. JAgric Food Chem 41, 2228–2234.

    Article  CAS  Google Scholar 

  • Montedoro, G., et al. (1993b). I potenziali modelli che definiscono la tipicità degli oli extra vergini diolliva. Ind Aliment 32, 618–631.

    Google Scholar 

  • Montedoro, G., Bertuccioli, M. and Anichini, F. (1978). Aroma analysis of virgin olive oil by head space (volatiles) and extraction (polyphenols) techniques. In Flavor of Foods and Beverages, pp. 246–281. Edited by G. Charalambous and G. E. Inglett. New York: Academic Press.

    Google Scholar 

  • Montedoro, G. and Cantarelli, C. (1969). Indagini sulle sostanze fenoliche presenti negli oli d’oliva. Riv Ital Sostanze Grasse 46, 3–12.

    Google Scholar 

  • Morales, M. T., et al. (1995). Virgin olive oil aroma: relationship between volatile compounds and sensory attributes by chemometrics. JAgric Food Chem 43, 2925–2931.

    Article  CAS  Google Scholar 

  • Morales, M. T., et al. (1998a). Tentative analysis of virgin olive oil aroma by SFE-HRGC-MS. J Chromatogr A 819, 267–275.

    Article  CAS  Google Scholar 

  • Morales, M. T., et al. (1998b) Analysis of virgin olive oil aroma by SFE-GC-MS. Proceedings 5th International Symposium on Hyphenated Techniques in Chromatography, February 11–13, Brugge, Belgium.

    Google Scholar 

  • Morales, M. T. and Aparicio, R. (1993a). Optimization by mathematical procedures of two dynamic headspace techniques for quantifying virgin olive oil volatiles. Anal Chim Acta 282, 423–431.

    Article  CAS  Google Scholar 

  • Morales, M. T. and Aparicio, R. (1993b). Characterizing some European olive oil varieties by volatiles using statistical tools. GrasasAceites 44, 113–115.

    Google Scholar 

  • Morales, M. T. and Aparicio, R. (1999). Effect of extraction conditions on sensory quality of virgin olive oil. JAm Oil Chem Soc 76, 295–300.

    Article  CAS  Google Scholar 

  • Morales, M. T., Aparicio, R. and Calvente, J. J. (1996). Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil. Flavour Fragr J 11, 171–178.

    Google Scholar 

  • Morales, M. T., Aparicio, R. and Gutiérrez, E. (1992). Técnicas de aislamiento y concentración de volatiles de aceites vegetales. GrasasAceites 43, 164–173.

    Article  CAS  Google Scholar 

  • Morales, M. T., Aparicio, R. and Rios, J. J. (1994). Dynamic headspace gas chromatographic method for determining volatiles in virgin olive oil. J ChromatogrA 668, 455–462.

    Article  CAS  Google Scholar 

  • Morales, M. T., Luna, G. and Aparicio, R. (1998). Volatile compounds and virgin olive oil sensory defects. Internal Report IGS-VO-250198. Instituto de la Grasa, Seville, Spain.

    Google Scholar 

  • Mordret, F., Morin, O. and Coustille, J. L. (1985). Determination des flaveurs de corps gras. Rev Fr Corps Gras 32, 193–200.

    CAS  Google Scholar 

  • Morrison III, W. H., Lyon, B. G. and Robertson, J. A. (1981). Correlation of gas liquid chromatographic volatiles with flavor intensity scores of stored sunflower oils. JAm Oil Chem Soc 58, 23–27.

    CAS  Google Scholar 

  • Nawar, W. W, et al. (1988). A study of the volatile components generated from butter oil by heat. Rev Fr Corps Gras 35, 117–122.

    CAS  Google Scholar 

  • Nergiz, C. and Ünal, K. (1991a). Effect of method of extraction on the total polyphenol, 1,2-diphenol content and stability of virgin olive oil. J Sci Food Agric 56, 79–84.

    Article  CAS  Google Scholar 

  • Nergiz, C. and Ünal, K. (1991b). Determination of phenolic acids in virgin olive oil. Food Chem 39, 237–240.

    Article  CAS  Google Scholar 

  • Noble, A. C., et al. (1987). Modification of a standardized system of wine aroma terminology. Am J Enol Vitic 38, 143–146.

    Google Scholar 

  • Nunez, A. J., Gonzalez, L. E and Janak, J. (1984). Pre-concentration of headspace volatiles for trace organic analysis by gas chromatography. J Chromatogr 300, 127–162.

    Article  CAS  Google Scholar 

  • Olias, J. M., et al. (1978). Componentes volatiles en el aroma del aceite de oliva virgen. II. Identificación y analisis sensorial de los eluyentes cromatograficos. Grasas Aceites 29, 211–218.

    Google Scholar 

  • Olias, J. M., et al. (1980). Componentes volatiles en el aroma del aceite de oliva. IV. Su evolución e influencia en el aroma durante el proceso de maduración de los frutos en las variedades Picual y Hojiblanca. GrasasAceites 31, 391–402.

    Google Scholar 

  • Olias, J. M., et al. (1993). Aroma of virgin olive oil: Biogenesis of the “green” odor notes. JAgric Food Chem 41, 2368–2373.

    Article  CAS  Google Scholar 

  • Olias, J. M., Del Barrio, A. and Gutiérrez, R. (1977). Componentes volatiles en el aroma del aceite de oliva virgen. I. GrasasAceites 28, 107–112.

    CAS  Google Scholar 

  • Paillard, N., Pitoulis, S. and Mattei, A. (1970). Techniques de preparation el analyse de l’arome de quelques fruits. Lebensm Wiss Technol 3, 107–114.

    CAS  Google Scholar 

  • Papadopoulos, G. and Tsimidou, M. (1992) Rapid method for the isolation of phenolic compounds from virgin olive oil using solid phase extraction. Proceedings 16th International Conference: Group Polyphenols, July 13–16, Lisbon, Portugal, pp. 192–196.

    Google Scholar 

  • Ragazzi, E. and Veronese, G. (1973a). Indagine sul componenti fenolici degli oli di oliva. JChromatogr 77, 369–375.

    Article  CAS  Google Scholar 

  • Ragazzi, E. and Veronese, G. (1973b). Quantitative analysis of phenolic compounds after thin layer chromatographic separation. Riv Ital Sostanze Grasse 50, 443–452.

    CAS  Google Scholar 

  • Raghavan, S. K., Reeder, S. K. and Khayat, A. (1989). Rapid analysis of vegetable oil flavor quality by dynamic headspace capillary gas chromatography. JAm Oil Chem Soc 66, 942–947.

    Article  CAS  Google Scholar 

  • Ramstad, T. and Nestrick, T. J. (1980). Purge vessel design in determinations of volatile organic compounds. Anal Chim Acta 121, 345–348.

    Google Scholar 

  • Ranalli, A. and Angerosa, E (1996). Integral Centrifuges for olive oil extraction. The qualitative characteristics of products. JAm Oil Chem Soc 73, 417–422.

    Article  CAS  Google Scholar 

  • Ranalli, A. and Serraiocco, A. (1996). Evaluation of characteristics of olive oil produced by innovative or traditional processing technologies. Riv Ital Sostanze Grasse 73, 303–314.

    CAS  Google Scholar 

  • Reineccius, G. (1993). Biases in analytical flavor profiles introduced by isolation method. In Flavor Measurement, pp. 61–76.

    Google Scholar 

  • Edited by C. T. Ho and C. H. Manley. New York: Marcel Dekker. Riberau-Gayon, P. (1968). Proprietes chimiques des phenols. Applications aux produits naturels. In Les Composes-Phenoliques des Vegetaux, pp. 28–55. Paris: Dunod. Rijks, J., et al. (1983). Possibilities and limitations of steam distillation-extraction as a pre-concentration technique for trace analysis of organics by capillary gas chromatography. J Chromatogr 279, 395–407.

    Google Scholar 

  • Rovellini, P., Cortesi, N. and Fedeli, E. (1997). Analysis of flavonoids from Olea europaea by HPLCUV and HPLC-electrospray-MS. Riv Ital Sostanze Grasse 74, 273–279.

    CAS  Google Scholar 

  • Sacchi, R., et al. (1996). A high-field 1H nuclear magnetic resonance study of the minor components in virgin olive oils. JAm Oil Chem Soc 73, 747–758.

    Article  CAS  Google Scholar 

  • Salami, M., et al. (1995). Formation of F2 isoprostanes in oxidized low density lipoprotein: inhibitory effect of hydroxytyrosol. Pharmacol Res 31, 275–279.

    Article  CAS  Google Scholar 

  • Salas, J. J. (1999). Ruta de la lipoxigenasa en aceituna: Contribución a la biogenesis del aroma del aceite de oliva. Ph.D. Thesis. Universidad de Sevilla, Seville, Spain.

    Google Scholar 

  • Schreier, P. (1984) Chromatographic studies of biogenesis of plant volatiles. In Series of Chromatographic Methods, pp. 52–147. Edited by W. Bertsch, W. G. Jennings and R. E. Kaiser. Heidelberg: Hüthig.

    Google Scholar 

  • Senf, L. and Frank, H. (1990). Thermal desorption of organic pollutants enriched on activated carbon. V. Desorption behaviour and temperature profile. J Chromatogr 520, 131–135.

    Article  CAS  Google Scholar 

  • Servili, M., et al. (1995). Sensory characterization of virgin olive oil and relationship with headspace composition. J Sci Food Agric 67, 61–70.

    Article  CAS  Google Scholar 

  • Shahidi, E (1997). Natural antioxidants: an overview. In Natural Antioxidants: Chemistry, Health Effects and Applications, pp. 1–11. Edited by E Shahidi. Champaign, IL: American Oil Chemists’ Society.

    Google Scholar 

  • Shahidi, E, Janitha, P. K. and Wanasundara, P. D. (1992). Phenolic antioxidants. Crit Rev Food Sci Nutr 32, 67–103.

    Article  CAS  Google Scholar 

  • Sheabar, E. Z. and Neeman, I. (1988). Separation and concentration of natural antioxidants from the rape of olives. JAm Oil Chem Soc 65, 990–993.

    Article  CAS  Google Scholar 

  • Singleton, V. L. and Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am JEnol Vitic 16, 144–158.

    CAS  Google Scholar 

  • Snell, E D. and Snell, C. T. (1953). Calorimetric Methods ofAnalysis, 3rd ed. New York: Van Nostrand, D. Co. pp. 104–162, 458–462.

    Google Scholar 

  • Snyder, J. M. et al. (1988). Comparison of gas chromatographic methods for volatile lipid oxidation compounds in soybean oil. JAm Oil Chem Soc 65, 1617–1620.

    Google Scholar 

  • Snyder, J. M., Frankel, E. N. and Selke, E. (1985). Capillary gas chromatographic analyses of head-space volatiles from vegetable oils. JAm Oil Chem Soc 62, 1675–1679.

    Article  CAS  Google Scholar 

  • Snyder, L. R. and Kirkland, J. J. (1979) Introduction to Modern Liquid Chromatography, 2nd ed. New York: Wiley-Interscience, pp. 247–268.

    Google Scholar 

  • Snyder, J. M. and Mounts, T. L. (1990). Analysis of vegetable oil volatiles by multiple headspace extraction. JAm Oil Chem Soc 67, 800–803.

    Article  Google Scholar 

  • Solinas, M. (1987). Analisi HRGC delle sostanze fenoliche di oli vergini di oliva in relazione al grado di maturazione e alla varieta delle olive. Riv Ital Sostanze Grasse 64, 255–262.

    CAS  Google Scholar 

  • Solinas, M., Angerosa, F. and Camera, L. (1988). Evoluzione ossidativa di oli vegetali durante la frittura: determinazione dei componenti volatili mediante HRGC e HPLC. Riv Ital Sostanze Grasse 65, 567–574.

    Google Scholar 

  • Solinas, M., Angerosa, E and Cucurachi, A. (1985). Connessione tra prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del diffeto di rancidità all’esame organolettico. Nota I. Riv Soc Ital Sci Aliment 14, 361–368.

    CAS  Google Scholar 

  • Solinas, M., Angerosa, E and Cucurachi, A. (1987). Connessione tra prodotti di neoformazione ossidativa delle sostanze grasse e insorgenza del diffeto di rancidit all’esame organolettico. Nota 2. Determinazione quantitativa. Riv Ital Sostanze Grasse 64, 137–145.

    CAS  Google Scholar 

  • Solinas, M., Angerosa, F. and Marsilio, V. (1988). Indagine su alcuni componenti dell’aroma degli oli vergini di oliva in relazione alla varietà delle olive. Riv Ital Sostanze Grasse 65, 361–368.

    CAS  Google Scholar 

  • Solinas, M. and Cichelli, A. (1981). Sulla determinazione delle sostanze fenoliche dell’olio di oliva. Riv Soc Ital Sci Aliment 10, 159–164.

    CAS  Google Scholar 

  • Solinas, M. and Cichelli, A. (1982). Il dosaggio per GLC e HPLC delle sostanze fenoliche dell’olio di oliva: ruolo ipotetico del tirosolo nell’accertamento della quantita di olio vergine nelle miscele con I rettificati. Riv Soc Ital Sci Aliment 11, 223–230.

    CAS  Google Scholar 

  • Solinas, M., Di Giovacchino, L. and Mascolo, A. (1978). I polifenoli delle olive e dell’olio d’oliva. Nota III: Influenza della temperatura e della durata della gramolatura sul contenuto in polifenoli degli oli. Riv Ital Sostanze Grasse 55, 19–23.

    CAS  Google Scholar 

  • Solinas, M., Marsilio, V. and Angerosa, E (1987). Evoluzione di alcuni componenti dell’aroma degli oli vergini di oliva in relazione al grado di maturazione delle olive. Riv Ital Sostanze Grasse 64, 475–480.

    CAS  Google Scholar 

  • Spencer, C. M., et al. (1988). Polyphenol complexation-some thoughts and observations. Phytochemistry 27, 2397–2409.

    Article  CAS  Google Scholar 

  • Stahl, E. (1969). Thin Layer Chromatography, pp. 854–905. Berlin: Springer-Verlag.

    Google Scholar 

  • Swinnerton, J. W, Linnenbom, V. J. and Cheek, C. H. (1962a). Determination of dissolved gases in aqueous solutions by gas chromatography. Anal Chem 34, 483–485.

    Article  CAS  Google Scholar 

  • Swinnerton, J. W, Linnenbom, V. J. and Cheek, C. H. (1962b). Revised sampling procedure for determination of dissolved gases in solution by gas chromatography. Anal Chem 34, 1509.

    Article  CAS  Google Scholar 

  • Tesarova, E. and Pacakova, V. (1983). Gas and HPLC of phenols. Chromatographia 17, 269–284.

    Article  CAS  Google Scholar 

  • Tressl, R. and Drawert, E. (1973). Biogenesis of banana volatiles. JAgric Food Chem 21, 560–565.

    Article  CAS  Google Scholar 

  • Tsimidou, M., et al. (1996). On the determination of minor phenolic acids of virgin olive oil by RPHPLC. GrasasAceites 47, 151–157.

    Article  CAS  Google Scholar 

  • Tsimidou, M., Papadopoulos, G. and Boskou, D. (1992a). Analisi HRGC delle sostanze fenoliche di oli vergini di oliva in relazione al grado di maturazione e alla varieta delle olive. Food Chem 44, 53–60.

    Article  CAS  Google Scholar 

  • Tsimidou, M., Papadopoulos, G. and Boskou, D. (1992b). Phenolic compounds and stability of virgin olive oil-Part I. Food Chem 45, 141–144.

    Article  CAS  Google Scholar 

  • Ullrich, E. and Grosch, W. (1988). Flavour deterioration of soya-bean oil: Identification of intense odour compounds formed during flavour reversion. Fat Sci Technol 90, 332–336.

    CAS  Google Scholar 

  • Vacca, V, et al. (1993). Primo approccio alla caratterizzazione dei composti fenolici di oli vergini di oliva della Sardegna: Elaborazioni statistiche multivariate dei risultati in HPLC. Riv Rai Sostanze Grasse 70, 595–599.

    CAS  Google Scholar 

  • Van der Hijden, H. T. W. M. and Born, I. J. (1996). Enzymes involved in the metabolic pathway leading to 3-methylbutanal in tomato fruit. In Flavor Science. Recent Developments, pp. 130–133. Edited by A. J. Taylor and D. S. Mottram. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Vazquez Roncero, A. (1978). Les polyphenols de l’huile d’olive et leur influence suries caracteristiques de l’huile. Rev Fr Corps Gras 25, 21–26.

    Google Scholar 

  • Vazquez Roncero, A., Graciani Constante, E. and Maestro Duran, R. (1974). Componentes fenólicos de la aceituna. I. Polifenoles de la pulpa. GrasasAceites 25, 269–279.

    Google Scholar 

  • Vazquez Roncero, A. and Janer del Valle, M. L. (1978). Evolución de los polifenoles durante el aderezo de aceitunas verdes. II Cambios en los polifenoles totales. GrasasAceites 29, 23–27.

    Google Scholar 

  • Vazquez Roncero, A., Janer del Valle, C. and Janer del Valle, M. L. (1975). Polifenoles naturales y estabilidad del aceite de oliva. GrasasAceites 26, 14–18.

    Google Scholar 

  • Vazquez Roncero, A., Janer del Valle, M. L. and Janer del Valle, C. (1973). Determinación de los polifenoles totales del aceite de oliva. Grasas Aceites 24, 350–355.

    Google Scholar 

  • Vazquez Roncero, A., Janer del Valle, M. L. and Janer del Valle, C. (1976). Componentes fenólicos de la aceituna III. Polifenoles del aceite. GrasasAceites 27, 185–191.

    Google Scholar 

  • Walter, W. M. Jr., Fleming, H. P. and Etchells, J. L. (1973). Preparation of antimicrobial compounds by hydrolysis of oleuropein from green olives. Appl Microbiol 26, 773–776.

    CAS  Google Scholar 

  • Wang, J., Reviejo, J. and Mannino, S. (1992). Organic phase enzyme electrode for the determination of phenols in olive oils. Anal Lett 28, 1399–1409.

    Article  Google Scholar 

  • Warner, K. and Frankel, E. N. (1985). Flavor stability of soybean oil based on induction periods for the formation of volatile compounds by gas chromatography. JAm Oil Chem Soc 62, 100–103.

    Article  CAS  Google Scholar 

  • Warner, K., Frankel, E. N. and Moulton, K. J. (1988). Flavor evaluation of crude oil to predict the quality of soybean oil. JAm Oil Chem Soc 65, 386–391.

    Article  CAS  Google Scholar 

  • Werkhoff, P. and Bretschneider, W. (1987). Dynamic headspace gas chromatography: Concentration of volatile components after thermal desorption by intermediate cryofocusing in a cold trap. I. Principle and applications. J Chromatogr 405, 87–98.

    Article  CAS  Google Scholar 

  • Weurman, C. (1969). Isolation and concentration of volatiles in food odor research. JAgric Food Chem 17, 370–384.

    Article  CAS  Google Scholar 

  • Wilkins, C. K. (1973). Chromatography of tea polyphenols on Sephadex columns as a method of estimation of molecular size. J Chromatogr 87, 250–253.

    Article  CAS  Google Scholar 

  • Wiseman, S. A., et al. (1996). Dietary non-tocopherol antioxidants present in extra virgin olive oil increase the resistance of low density lipoproteins to oxidation in rabbits. Atherosclerosis 120, 15–23.

    Article  CAS  Google Scholar 

  • Wyatt, D. M. (1987). Dynamic headspace gas chromatography/mass spectrometry technique for determining volatiles in ambient stored vegetable oils. J Chromatogr Sci 25, 257–261.

    Article  CAS  Google Scholar 

  • Wyllie, S. G., et al. (1995). Key aroma compounds in melons. In Fruit Flavors: Biogenesis, Characterization and Authentication, pp. 248–257. Edited by R. L. Rouseff and M. M. Leahy. Washington, DC: American Chemical Society.

    Google Scholar 

  • Wyllie, S. G., et al. (1996). Biochemical pathways for the formation of esters in ripening fruit. In Flavor Science. Recent Developments, pp. 52–57. Edited by A. J. Taylor and D. S. Mottram. Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Yangkyo, P. S., et al. (1995). Characterization of a C-5,13-cleaving enzyme of 13(S)-hydroperoxide of linolenic acid by soybean seed. Plant Physiol 108, 1211–1218.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morales, M.T., Tsimidou, M. (2000). The Role of Volatile Compounds and Polyphenols in Olive Oil Sensory Quality. In: Harwood, J., Aparicio, R. (eds) Handbook of Olive Oil. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5371-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5371-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5194-6

  • Online ISBN: 978-1-4757-5371-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics