Skip to main content

Abstract

The use of targeted therapies to treat infectious diseases is a novel application that requires a persistent infection that cannot be cleared by other means and the expression of microbial antigens on the surface of productively-infected cells. Although some bacterial or parasitic infections may meet these criteria, chronic viral infections and microbe-induced neoplasia are the most likely targets. In this chapter we will discuss the use of immunotoxins to treat human immunodeficiency virus (HIV) infection. The results demonstrate the importance of targeting the appropriate molecules and utilizing the cell biology of the microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pincus, S. H., and V. V. Tolstikov. Anti-human immunodeficiency virus immunoconjugates. Adv. Pharmacol. 1995; 32: 205.

    Article  Google Scholar 

  2. Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho. HIV- 1 dynamics in vivo: Virion clearance rate, infected cell lifespan, and viral generation time. Science 1996; 271: 1582.

    Article  Google Scholar 

  3. Finberg, R. W., S. M. Wahl, J. B. Allen, G. Soman, T. B. Strom, J. R. Murphy, and J. C. Nichols. Selective elimination of HIV-1-infected cells with an interleukin-2 receptor-specific cytotoxin. Science 1991; 252: 1703.

    Article  Google Scholar 

  4. Borvak, J., C.-S. Chou, K. Bell, G. Van Dyke, H. Zola, O. Ramilio, and E. S. Vitetta. Expression of CD25 defines peripheral blood mononuclear cells with productive versus latent HIV infection. J. Immunol. 1995; 155: 3196.

    Google Scholar 

  5. McCoig, C., G. Van Dyke, C.-S. Chou, L. J. Picker, O. Ramilo, and E. S. Vitetta. An anti-CD45RO immunotoxin eliminates T cells latently infected with HIV-1 in vitro. Proc. Natl. Acad. Sci. USA 1999; 96: 1 1482.

    Google Scholar 

  6. Uckun, F. M., K. Bellomy, K. O’Neill, Y. Messinger, T. Johnson, and C.-L. Chen. Toxicity, biological activity, and pharmacokinetics of TXU (Anti-CD7)-pokeweed antiviral protein in chimpanzees and adult patients infected with HIV-1. J. Pharmacol. Exp. Ther. 1999; 291: 1301.

    Google Scholar 

  7. Chaudhary, V. K., T. Mizukami, T. R. Fuerst, D. J. FitzGerald, B. Moss, I. Pastan, and E. A. Berger. Selective killing of HIV-infected cells by recombinant human CD4-Pseudomonas exotoxin hybrid protein. Nature 1988; 335: 369.

    Article  Google Scholar 

  8. Berger, E. A., B. Moss, and I. Pastan. Reconsidering targeted toxins to eliminate HIV infection: You gotta have HAART. Proc Natl Acad Sci USA 1998; 95: 1 1511.

    Google Scholar 

  9. Pincus, S. H., and J. McClure. Soluble CD4 enhances the efficacy of immunotoxins directed against gp41 of the human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 1993; 90: 332.

    Article  Google Scholar 

  10. Pincus, S. H., K. Wehrly, R. Cole, H. Fang, G. K. Lewis, J. McClure, A. J. Conley, B. Wahren, M. R. Posner, A. L. Notkins, S. A. Tilley, A. Pinter, L. Eiden, M. Teintze, D. Dorward, and V. V. Tolstikov. In vitro effects of anti-HIV immunotoxins directed against multiple epitopes on the HIV-1 envelope glycoprotein gp160. AIDS Res. Hum. Retrovirus 1996; 12: 1041.

    Article  Google Scholar 

  11. Wild, C., T. Oas, C. McDanal, D. Bolognesi, and T. Matthews. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc. Nat. Acad. Sci. (USA) 1992; 89: 10537.

    Article  Google Scholar 

  12. Mebatsion, T., S. Finke, F. Weiland, and K. K. Conzelmann. A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell 1997; 90: 841.

    Article  Google Scholar 

  13. Pincus, S. H. Anti-HIV immunotoxins: gp41 rather than gpl 20 should be the target. Int. Antiviral News 1994; 2: 147.

    Google Scholar 

  14. Pincus, S. H., K. Wehrly, and B. Chesebro. Treatment of HIV tissue culture infection with monoclonal antibody-ricin A chain conjugates. J. Immunol. 1989; 142: 3070.

    Google Scholar 

  15. Pincus, S. H., R. L. Cole, E. M. Hersh, D. Lake, Y. Masuho, P. J. Durda, and J. McClure. In vitro efficacy of anti-HIV immunotoxins targeted by various antibodies to the envelope protein. J. Immunol. 1991;146.:4315.

    Google Scholar 

  16. Ashorn, P., B. Moss, J. N. Weinstein, V. K. Chaudhary, D. J. FitzGerald, I. Pastan, and E. A. Berger. Elimination of infectious human immunodeficiency virus from human T-cell cultures by synergistic action of CD4-Pseudomonas exotoxin and reverse transcriptase inhibitors. Proc. Natl. Acad. Sci. USA 1990; 87: 8889.

    Article  Google Scholar 

  17. Ashorn, P., G. Englund, M. A. Martin, B. Moss, and E. A. Berger. Anti-HIV activity of CD4-Pseudomonas exotoxin on infected primary human lymphocytes and monocyte/macrophages. J. Infect. Dis 1991; 163: 703.

    Article  Google Scholar 

  18. Kennedy, P. E., B. Moss, and E. A. Berger. Primary HIV-1 refractory to neutralization by soluble CD4 are potently inhibited by CD4-Pseudomonas exotoxin. Virology 1993; 192: 375.

    Article  Google Scholar 

  19. Pincus, S. H., and K. Wehrly. AZT demonstrates anti-HIV-1 activity in persistently infected cell lines: implications for combination chemotherapy and immunotherapy. J. Infect. Dis. 1990; 162: 1233.

    Article  Google Scholar 

  20. Till, M. A., S. Zolla-Pazner, M. K. Gorny, J. S. Patton, J. W. Uhr, and E. S. Vitetta. Human immunodeficiency virus-infected T cells and monocytes are killed by monoclonal human anti-gp41 antibodies coupled to ricin A chain. Proc. Natl. Acad. Sci. USA 1989; 86: 1987.

    Article  Google Scholar 

  21. Pincus, S. H., J. McClure, and H. Fang. Use of anti-HIV immunotoxins as probes of the biology of HIV-infected cells. Can. J. Infect. Dis. 1994;5(suppl. A): 23A.

    Google Scholar 

  22. Davey, R. T., C. M. Boenning, B. R. Herpin, D. H. Batts, J. A. Metcalf, L. Wathen, S. R. Cox, M. A. Polis, J. A. Kovacs, J. Falloon, R. E. Walker, N. Salzman, H. Masur, and H. C. Lane. Recombinant soluble CD4-pseudomonas exotoxin, a novel immunotoxin, in the treatment of individuals infected with HIV. J. Inf. Dis. 1994; 170. 1180.

    Article  Google Scholar 

  23. Ramachandran, R. V., D. A. Katzenstein, R. Wood, D. H. Batts, and T. C. Merigan. Failure of short-term CD4–PE40 infusions to reduce viral load in HIV infected individuals. J. Inf. Dis. 1994; 170: 1009.

    Article  Google Scholar 

  24. LeMaistre, C. F., S. Rosen, A. Frankel, S. Kornfeld, E. Saria, C. Meneghetti, J. Drajesk, D. Fishwild, P. Scannon, and V. Byers. Phase I trial of H65-RTA immunoconjugate in patients with cutaneous T-cell lymphoma. Blood 1991; 78: 1173.

    Google Scholar 

  25. Strand, V., P. E. Lipsky, G. W. Cannon, L. H. Calabrese, C. Weisenhutter, S. B. Cohen, N. J. Olsen, M. L. Lee, T. J. Lorenz, and B. Nelson. Effects of administration of an anti-CD5 plus immunoconjugate in rheumatoid arthritis: results of two phase two studies. Arthritis Rheum. 1993; 36: 620.

    Article  Google Scholar 

  26. Amlot, P. L., M. J. Stone, D. Cunningham, J. Fay, J. Newman, R. Collins, R. May, M. McCarthy, V. Ghetie, O. Ramilo, P. E. Thorpe, J. W. Uhr, and E. S. Vitetta. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 1993; 82: 2624.

    Google Scholar 

  27. Press, O. W., J. F. Eary, F. R. Appelbaum, P. J. Martin, C. G. Badger, W. B. Nelp, S. Glenn, G. Butchko, D. Fisher, B. Porter, D. C. Matthews, L. D. Fisher, and I. D. Bernstein. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N. Engl. J Med. 1993; 329: 1219.

    Article  Google Scholar 

  28. Allaway, G. P., K. L. Davis-Bruno, G. A. Beaudry, E. B. Garcia, E. L. Wong, A. M. Ryder, K. W. Hasel, M.-C. Gauduin, R. A. Koup, S. McDougal, and P. J. Maddon. Expression and characterization of CD4-IgG2, a novel heteroteramer that neutralizes primary HIV-1 isolates. AIDS Res. Hum. Retroviruses 1995; 11: 533.

    Article  Google Scholar 

  29. Pincus, S. H., T. K. Marcotte, B. M. Forsyth, and H. Fang. In vivo testing of anti-HIV immunotoxins. In Immunotoxin Methods and Protocols, Vol. 166. Methods in Molecular Biology, W. A. Hall, ed. Humana Press, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pincus, S.H., Fang, H., Wilkinson, R. (2002). Anti-HIV Immunotoxins. In: Muzykantov, V., Torchilin, V. (eds) Biomedical Aspects of Drug Targeting. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4627-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4627-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5312-4

  • Online ISBN: 978-1-4757-4627-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics