Skip to main content

Blood-Brain Barrier Transport and Drug Targeting to the Brain

  • Chapter
Biomedical Aspects of Drug Targeting

Abstract

The transport of drugs to the central nervous system (CNS) from the circulating blood requires them to cross either the blood-brain barrier (BBB) or blood-cerebrospinal fluid barrier (BCSFB) (Fig. 1). The BBB, which is formed by complex tight junctions of brain capillary endothelial cells, separates the circulating blood from the interstitial fluid in the brain. Although the BCSFB is also formed by the complex tight junctions of the choroid plexus epithelial cells and separates the blood from the cerebrospinal fluid (CSF), the area of BBB is about 5,000-times greater than that of the BCSFB. There is an ependymal layer between the brain parenchymal cells and CSF, but this does not act as a barrier to prevent diffusion of drugs from the CSF to the CNS. Nevertheless, the diffusion rate of drugs between CSF and brain parenchymal cells is very slow. Although the cellular volume of the brain capillaries is only 0.1~0.2% of the entire brain, the total length of the brain capillaries is about 600 km and the total surface area is about 9–12 m2 in humans. As the brain capillaries are ramified, like the network in the cerebrum at intervals of about 40 gm, small molecules such as nutrients immediately diffuse into the brain parenchymal ‘cells following their passage across the BBB. In general, the BBB is a main route for drug transport from the blood to the CNS. In other words, a high drug concentration in the CSF is not necessary if the drug is able to cross the BBB very efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Oldendolf, W.H. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain. Res. 1970; 24: 372.

    Article  Google Scholar 

  2. Oldendolf, W.H. Brain uptake of radiolabeled amino acids, amines and hexose after arterial injection. Am. J. Physiol. 1971; 221: 1629.

    Google Scholar 

  3. Terasaki, T., and Hosoya, K. The blood-brain barrier efflux transporters as a detoxifying system for the brain. Adv. Drug Deliv. Rev. 1999; 36: 195.

    Article  Google Scholar 

  4. Pardridge, W.M., Boado, R.J., Farrell, and C.R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. J. Biol. Chem. 1990; 265: 18035.

    Google Scholar 

  5. Augus, D.B., Gambhir, S.S., Pardridge, W.M., Spielholz, C., Baselga, J., Vera, J.C., and Golde, D.W. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J. Clin. Invest. 1997; 100: 2842.

    Google Scholar 

  6. Tamai, I., Takanaga, H., Maeda, H., Sai, Y., Ogihara, T., Higashida, H., and Tsuji, A. Participation of proton-cotransporter, MCTI, in the intestinal transport of monocarboxylic acids. Biochem. Biophys. Res. Commun. 1995; 214: 482.

    Article  Google Scholar 

  7. Kanai, Y., Segawa, H., Miyamoto, K., Uchino,-H., Takeda, E., and Endou, H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 1998; 273: 23629.

    Google Scholar 

  8. Boado, R.J., Li, J.Y., Nagaya, M., Zhang, C., and Pardridge, W.M. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc. Natl. Acad. Sci. USA 1999; 96: 12079.

    Google Scholar 

  9. Smith, Q.R. Transport of glutamate and other amino acids at the blood-brain barrier. J. Nutr. 2000; 130; 1016S.

    Google Scholar 

  10. Shimura, T., Tabata, S., Ohnishi, T., Terasaki, T., and Tsuji, A. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebiratide, through the blood-brain barrier. J. Pharmacol. Exp. Ther. 1991; 258: 459.

    Google Scholar 

  11. Terasaki, T., Hirai, K., Sato, H., Kang, Y.S., and Tsuji, A. Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078 into the blood-brain barrier. J. Pharmacol. Exp. Ther. 1989; 251:351.

    Google Scholar 

  12. Tsuji, A., Terasaki, T., Takabatake, Y., Tenda, Y., Tamai, I., Yamashima, T., Moritani, S., Tsuruo, T., and Yamashita, J. P-Glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Lif, Sci. 1992; 51: 1427.

    Google Scholar 

  13. Schinkel, A.H., Smit, J.J.M., van Tellingen, O., Beijnen, J.H., Wagenaar, E., van Deemter, L., Mol, C.A.A.M., van der Valk, M.A., Robanus-Maandag, E.C., to Riele, H.P.J., Berns, A.J.M., and Borst, P. Disruption of the mouse mdrl a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491.

    Google Scholar 

  14. Golden, P.L., and Pardridge, W.M. P-Glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res. 1999; 819: 143.

    Article  Google Scholar 

  15. Schinkel, A.H. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug Deliv. Rev. 1999; 36: 179.

    Article  Google Scholar 

  16. Kusuhara, H., Suzuki, H., Terasaki, T., Kakee, A., Lemaire, M., and Sugiyama, Y. PGlycoprotein mediates the efflux of quinidine across the blood-brain barrier. J. Pharmacol. Exp. Ther. 1997; 283: 574.

    Google Scholar 

  17. Kakee, A., Terasaki, T., and Sugiyama, Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J. Pharmacol. Exp. Ther. 1996; 277: 1550.

    Google Scholar 

  18. Hosoya, K., Takashima, T., Tetsuka, K., Nagura, T., Ohtsuki, S., Takanaga, H., Ueda, M., Yanai, N., Obinata, M., and Terasaki, T. mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J. Drug Target. 2000a; 8: 357.

    Google Scholar 

  19. Hosoya, K., Tetsuka, K., Nagase, K., Tomi, M., Saeki, S., Ohtsuki, S., Takanaga, H., Yanai, N., Obinata, M., Kikuchi, A., Okano,T., and Terasaki, T. Conditionally immortalized brain capillary endothelial cell lines established from transgenic mouse harboring temperature-sensitive SV 40 large T-antigen gene. AAPS Pharmsci. 2000b; 2:article 27,(http://www.pharmsci.org/).

    Google Scholar 

  20. Hosoya, K., Sugawara, M., Asaba, H., and Terasaki, T. Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J. Neurochem. 1999; 73: 1206.

    Article  Google Scholar 

  21. Kakee, A., Takanaga, H., Terasaki, T., Naito, M., Tsuruo, T., and Sugiyama Y. Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J. Neurochem. 2001; 79.• 110.

    Google Scholar 

  22. Asaba, H., Hosoya, K., Takanaga, H., Ohtsuki, S., Tamura, E., Takizawa, T., and Terasaki, T. Blood-brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2. J. Neurochem. 2000; 75:1907.

    Google Scholar 

  23. Hosoya, K., Asaba, H., and Terasaki, T. Brain-to-blood efflux transport of estrone-3sulfate at the blood-brain barrier in rats. Life Sci. 2000c; 67: 2699.

    Google Scholar 

  24. Takanaga, H., Ohtsuki, S., Hosoya, K., and Terasaki, T. GAT2/BGT-1 as a system responsible for the transport of y-aminobutyric acid at the mouse blood-brain barrier. J. Cereb. Blood Flow Metab. 2001; 21: 1232.

    Google Scholar 

  25. Betz, A.L., and Goldstein, G.W. Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 1978; 202: 225.

    Article  Google Scholar 

  26. Takanaga, H., Tokuda, N., Ohtsuki, S., Hosoya, K., and Terasaki, T. ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol. Pharmacol. 2002, in press.

    Google Scholar 

  27. Takasawa, K., Terasaki, T., Suzuki, H., and Sugiyama, Y. In vivo evidence for carrier-mediated efflux transport of 3’-azido-3’-deoxythymidine and 2’,3’-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J. Pharmacol. Exp. Ther. 1997; 281: 369.

    Google Scholar 

  28. Bodor, N., and Buchwald, P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv. Drug Deliv. Rev. 1999; 36: 229.

    Google Scholar 

  29. Pardridge, W.M. Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 1999; 36: 299.

    Article  Google Scholar 

  30. Shi, N., Zhang, Y., Zhu, C., Boado, R.J., and Pardridge, W.M. Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci. USA 2001; 98: 12754.

    Google Scholar 

  31. Venter, J.C., Adams, M.D., Myers, E.W., et al. The sequence of the human genome. Science 2001; 291: 1304.

    Article  Google Scholar 

  32. Terasaki, T., and Hosoya, K. Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol. Pharm. Bull. 2001; 24: 111.

    Article  Google Scholar 

  33. Kakee, A., Terasaki, T., and Sugiyama, Y. Selective brain to blood efflux transport of para-aminohippuric acid across the blood-brain barrier: In vivo evidence by use of the Brain Efflux Index method. J. Pharmcol. Exp. Ther. 1997; 283: 1018.

    Google Scholar 

  34. Komura, J., Tamai, I., Senmaru, M., Terasaki, T., Sai, Y., and Tsuji, A. Sodium and chloride ion-dependent transport of beta-alanine across the blood-brain barrier. J. Neurochem. 1996; 67: 330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hosoya, Ki., Ohtsuki, S., Terasaki, T. (2002). Blood-Brain Barrier Transport and Drug Targeting to the Brain. In: Muzykantov, V., Torchilin, V. (eds) Biomedical Aspects of Drug Targeting. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4627-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4627-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5312-4

  • Online ISBN: 978-1-4757-4627-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics