Skip to main content

Abstract

The propagation of electromagnetic waves in biological materials is governed by the dielectric constant, conductivity, source configuration, and the geometrical factors that describe the tissue structure. These parameters also determine the quantity of energy a given biological body extracts from the propagating wave. When the radius of curvature of the body surface is large compared to the wavelength and beam width of the impinging radiation, planar tissue models may be used to estimate the absorbed energy and its distribution inside the body. Otherwise, the absorbed energy will be dictated by the size of the body, the curvature of its surface, the ratio of body size to wavelength, and the source characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S. J., and W. D. Hurt (1979) Calorimetric measurements of microwave energy absorption by mice after simultaneous exposure of 18 animals Radio Sci. 14: 1S.

    Article  Google Scholar 

  • Asano, A., and G. Yamamoto (1975) Light scattering by spheroidal particles. Appl. Opt. 14: 29.

    Google Scholar 

  • Barber, P. (1977a) Electromagnetic power absorption in prolate spheroidal models of man and animals at resonance. IEEE Trans. Biomed. Eng. BME-24: 513.

    Article  Google Scholar 

  • Barber, P. W. (1977b) Resonance electromagnetic absorption by nonspherical dielectric objects. IEEE Trans. Microwave Theory Tech. MTT-25: 373.

    Article  Google Scholar 

  • Barber, P. W., and C. Yeh (1975) Scattering of electromagnetic waves by arbitrary shaped dielectric bodies. Appl. Opt. 14: 2864.

    Article  Google Scholar 

  • Borup, D. T., and O. P. Gandhi (1984) Fast-Fourier transform method for calculation of SAR distributions in finely discretized inhomogeneous models of biological bodies. IEEE Trans. Microwave Theory Tech. MTT-32: 355.

    Article  Google Scholar 

  • Chatterjee, I., M. J. Hagman, and O. P. Gandhi (1980) Electromagnetic energy deposition in an inhomogeneous block model for near-field irradiation conditions. IEEE Trans. Microwave Theory Tech. MTT-28: 1452.

    Article  Google Scholar 

  • Chen, K. M. (1980) Interaction of electromagnetic fields with biological bodies. In: Research Topics in Electromagnetic Theory, J. A. Kong (ed.). Wiley, New York, p. 290.

    Google Scholar 

  • Chen, K. M., and B. S. Guru (1977) Internal EM field and absorbed power density in human torsos induced by 1–500 MHz EM waves. IEEE Trans. Microwave Theory Tech. MTT-25: 746.

    Google Scholar 

  • Chou, C. K., A. W. Guy, L. E. Borneman, L. L. Kunz, and P. Kramar (1983) Chronic exposure of rabbits to 0.5 and 5 mW/cm2 2450-MHz CW microwave radiation. Bioelectromagnetics 4: 63.

    Article  Google Scholar 

  • Conover, D. L., W. E. Murray, Jr., E. D. Foley, J. M. Lary, and W. H. Parr (1980) Measurement of electric and magnetic field strengths from industrial radio frequency (6–38 MHz) plastic sealers. Proc. IEEE 68: 17.

    Article  Google Scholar 

  • Deford, J. F., O. P. Gandhi, and M. J. Hagman (1983) Moment-method solutions and SAR calculations for inhomogeneous models of man with large number of cells. IEEE Trans. Microwave Theory Tech. MTT-31: 848.

    Article  Google Scholar 

  • de Lorge, J. O. (1984) Operant behavior and colonic temperature of Macaca mulatta exposed to RF fields at and above resonance frequencies. Biolectromagnetics 5: 233.

    Article  Google Scholar 

  • Dumey, C. H. (1980) Electromagnetic dosimetry for models of humans and animals: A review of theoretical and numerical techniques. Proc. IEEE 68: 22.

    Google Scholar 

  • Durney, C. H., C. C. Johnson, and H. Massoudi (1975) Long wave-length analysis of plane wave irradiation of a prolate spheroidal model of man. IEEE Trans. Microwave Theory Tech. MTT-23: 246.

    Article  Google Scholar 

  • Dumey, C. H., C. C. Johnson, P. W. Barber, H. Massoudi, M. F. Iskander, J. L. Lords, D. K. Ryser, S. J. Allen, and J. C. Mitchell (1978) Radiofrequency Radiation Dosimetry Handbook, 2nd ed. Rep. SAM-TR-28–22/32, USAF School of Aerospace Medicine, Brooks AFB, Texas.

    Google Scholar 

  • Durney, C. H., M. F. Iskander, H. Massoudi, and C. C. Johnson (1979) An empirical formula for broadband SAR calculations of prolate spheroidal models of humans and animals. IEEE Trans. Microwave Theory Tech. MTT-27: 758.

    Article  Google Scholar 

  • Durney, C. H., M. F. Iskander, H. Massoudi, S. J. Allen, and J. C. Mitchell (1980) Radio Frequency Radiation Dosimetry Handbook, 3rd ed. Brooks AFB, Texas.

    Google Scholar 

  • Gandhi, O. P. (1975) Frequency and orientation effects on whole animal absorption of electromagnetic waves. IEEE Trans. Biomed. Eng. BME-22: 536.

    Article  Google Scholar 

  • Gandhi, O. P. (1980) State of the knowledge for electromagnetic absorbed dose in man and animals. Proc. IEEE 68: 24.

    Article  Google Scholar 

  • Gandhi, O. P. (1982) Electromagnetic absorption in inhomogeneous model of man for realistic exposure conditions. Bioelectromagnetics 3: 81.

    Article  Google Scholar 

  • Gandhi, O. P., E. L. Hunt, and J. A. D’Andrea (1977) Deposition of EM energy in animals and in models of man with and without grounding and reflector effects. Radio Sci. 12: 39S.

    Article  Google Scholar 

  • Gandhi, O. P., M. J. Hagman, and J. A. D’Andrea (1979) Part-body and multi-body effects on absorption of radio frequency electromagnetic energy by animals and by models of man. Radio Sci. 14: 15S.

    Google Scholar 

  • Guru, B. S., and K. M. Chen (1976) Experimental and theoretical studies in electromagnetic field induced inside finite biological bodies. IEEE Trans. Microwave Theory Tech. MTT-24: 433.

    Article  Google Scholar 

  • Guy, A. W. (1974) Quantitation of induced electromagnetic field patterns in tissue and associated biological effects. In: Biological Effects and Health Hazards of Microwave Radiation, P. Czerski (ed.). Polish Medical Publishers, Warsaw, pp. 203–216.

    Google Scholar 

  • Guy, A. W., and C. K. Chou (1976) System for quantitative chronic exposure of a population of rodents to UHF fields. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8011, pp. 389–410.

    Google Scholar 

  • Guy, A. W., and C. K. Chou (1978) Microwave and RF dosimetry. In: The Physical Basis of Electromagnetic Interaction with Biological Systems, L. S. Taylor, and A. Y. Cheung (eds.). HEW Publ. (FDA) 78–8055, pp. 165–216.

    Google Scholar 

  • Guy, A. W., J. C. Lin, and C. K. Chou (1975) Electrophysiologic effects of electromagnetic fields on animals. In: Fundamental and Applied Aspects of Nonionizing Radiation, S. M. Michaelson, M. W. Miller, R. Magin, and E. L. Carstensen (eds.). Plenum Press, New York, p. 167.

    Chapter  Google Scholar 

  • Guy, A. W., M. D. Webb, and C. C. Sorensen (1976) Determination of power absorption in man exposed to HF electromagnetic fields by thermographic measurements on scale models. IEEE Trans. Biomed. Eng. BME-23: 361.

    Article  Google Scholar 

  • Guy, A. W., J. Wallace, and J. A. McDougall (1979) Circularly polarized 2450-MHz waveguide system for chronic exposure of small animals to microwaves. Radio Sci. 14: 63S.

    Article  Google Scholar 

  • Hagman, M. J. (1978) Numerical Studies of Absorption of Electromagnetic Energy by Man. Ph.D. dissertation, Department of Electrical Engineering, University of Utah.

    Google Scholar 

  • Hagman, M. J., O. P. Gandhi, and C. H. Durney (1979a) Numerical calculation of electromagnetic energy deposition for a realistic model of man. IEEE Trans. Microwave Theory Tech. MTT-27:804.

    Article  Google Scholar 

  • Hagman, M. J., O. P. Gandhi, J. A. D’Andrea, and I. Chatterjee (1979b) Head resonance: Numerical solutions and experimental results. IEEE Trans. Microwave Theory Tech. MIT-27: 809.

    Article  Google Scholar 

  • Harrington, R. F. (1968) Field Computation by Moment Methods. McGraw—Hill, New York.

    Google Scholar 

  • Harrington, R. F., and J. R. Mautz (1972) Green’s function for surfaces of revolution. Radio Sci. 7 :603.

    Article  Google Scholar 

  • Hill, D. A. (1982) Human whole-body RF absorption studies using a TEM cell exposure system. IEEE Trans. Microwave Theory Tech. MTT-30: 1847.

    Article  Google Scholar 

  • Ho, H. S., and A. W. Guy (1975) Development of dosimetry for RF and microwave radiation. Health Phys. 29: 317.

    Article  Google Scholar 

  • Huang, A. T., M. E. Engle, J. A. Elder, J. B. Kinn, and T. R. Ward (1977) The effects of microwave radiation (2450 MHz) on the morphology and chromosomes of lymphocytes. Radio Sci. 12: 173S.

    Article  Google Scholar 

  • Johnson, C. C., and A. W. Guy (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc. IEEE 60: 692.

    Article  Google Scholar 

  • Johnson, C. C:, C. H. Durney, and H. Massoudi (1975) Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals. IEEE Trans. Microwave Theory Tech. MTT-23:739.

    Article  Google Scholar 

  • Joines, W. T., and R. J. Spiegel (1975) Resonance absorption of microwaves by the human skull. IEEE Trans. Biomed. Eng. BME-21: 46.

    Article  Google Scholar 

  • Karimullah, K., K. M. Chen, and D. P. Nyquist (1980) Electromagnetic coupling between a thin-wire antenna and a neighboring biological body. IEEE Trans. Microwave Theory Tech. MIT-28: 1218.

    Google Scholar 

  • Kinn, J. B. (1977) Whole-body dosimetry of microwave radiation in small animals: The effect of body mass and exposure geometry. Radio Sci. 12: 61S.

    Article  Google Scholar 

  • Kritikos, H. N., and H. P. Schwan (1972) Hot spot generated in conduction spheres by EM waves and biological implications. IEEE Trans. Biomed. Eng. BME-19: 53.

    Article  Google Scholar 

  • Kritikos, H. N., and H. P. Schwan (1975) The distribution of heating potential inside lossy spheres. IEEE Trans. Biomed. Eng. BME-22: 457.

    Article  Google Scholar 

  • Lakhtakia, A., M. F. Iskander, and C. H. Durney (1983) An iterative extended boundary condition method for solving the absorption characteristics of lossy dielectric objects of large aspect ratios. IEEE Trans. Microwave Theory Tech. MIT-32: 640.

    Article  Google Scholar 

  • Leicher-Preka, A., and H. S. Ho (1976) Dependence of total and distributed absorbed microwave energy upon size and orientation of rat phantoms in waveguide. In: Biological Effects of Electromagnetic Waves, Vol. II, C. C. Johnson and M. L. Shore (eds.). HEW Publ. (FDA) 77–8011, pp. 158–168.

    Google Scholar 

  • Lin, J. C. (1975) Microwave properties of fresh mammalian brain tissues at body temperature. IEEE Trans. Biomed. Eng. BME-22: 74.

    Article  Google Scholar 

  • Lin, J. C. (1976) Interaction of two cross-polarized electromagnetic waves with mammalian cranial structures. IEEE Trans. Biomed. Eng. BME-23: 371.

    Article  Google Scholar 

  • Lin, J. C. (1978) Microwave biophysics. In: Microwave Bioeffects and Radiation Safety, M. A. Stuchly (ed.). IMPI, Edmonton, Canada, pp. 15–54.

    Google Scholar 

  • Lin, J. C. (1980) Whole-body exposure in the near zone of HF electromagnetic fields. Int. Electromagnetic Waves and Biology Symposium, Jouy en Josas, France.

    Google Scholar 

  • Lin, J. C. (1986) Computer methods for field intensity predictions. In: Handbook of Biological Effects of Electromagnetic Fields, C. Polk and E. Postow (eds.). CRC Press, Boca Raton, Fla, pp. 273–314.

    Google Scholar 

  • Lin, J. C., and C. L. Wu (1976) Scattering of microwaves by dielectric materials used in laboratory animal restrainers. IEEE Trans. Microwave Theory Tech. MTT-24: 219.

    Article  Google Scholar 

  • Lin, J. C., A. W. Guy, and C. C. Johnson (1973a) Power deposition in a spherical model of man exposed to 1–20 MHz electromagnetic fields. IEEE Trans. Microwave Theory Tech. MIT-21: 791.

    Article  Google Scholar 

  • Lin, J. C., A. W. Guy, and G. H. Kraft (1973b) Microwave selective brain heating. J. Microwave Power 8: 275.

    Google Scholar 

  • Lin, J. C., H. M. Grove, and J. C. Sharp (1975) Comparative measurement of dielectric properites of fresh mammalian tissues. Proc. Conference Proc. Electromagnetic Meas., p. 246.

    Google Scholar 

  • Lin, J. C., H. J. Bassen, and C. L. Wu (1977) Perturbation effects of animal restraining materials on microwave exposure. IEEE Trans. Biomed. Eng. BME-24: 80.

    Article  Google Scholar 

  • Liversay, D. E., and K. M. Chen (1974) Electromagnetic fields induced inside arbitrary shaped biological bodies. IEEE Trans. Microwave Theory Tech. MTT-22: 1273.

    Article  Google Scholar 

  • Marshall, S. V., and R. F. Brown (1983) Experimental determination of whole body average SAR of mice exposed to 200–400 MHz CW. Bioelectromagnetics 4: 267.

    Article  Google Scholar 

  • Massoudi, H., C. H. Durney, and C. C. Johnson (1977) Long wavelength electromagnetic power absorption in ellipsoidal models of man and animals. IEEE Trans. Microwave Theory Tech. MTT-25: 41.

    Google Scholar 

  • Massoudi, H., C. H. Durney, P. W. Barber, and M. F. Iskander (1982) Post resonance EM absorption by man and animals. Bioelectromagnetics 3: 333.

    Article  Google Scholar 

  • Mautz, J. R., and R. F. Harrington (1969) Radiation and scattering from bodies of revolution. Appl. Sci. Res. 20: 405.

    Article  Google Scholar 

  • Olsen, R. G. (1979) Preliminary studies: Far-field microwave dosimetric measurements in a full-sized model of man. J. Microwave Power 14: 383.

    Google Scholar 

  • Olsen, R. G. (1982) Far-field dosimetric measurements in a full-sized man model at 2 GHz. Bioelectromagnetics 3: 433.

    Article  Google Scholar 

  • Olsen, R. G., T. A. Griner, and G. D. Prettyman (1980) Far-field microwave dosimetry in a rhesus monkey model. Bioelectromagnetics 1: 149.

    Article  Google Scholar 

  • Olsen, R. G., J. O. de Lorge, J. R. Forstall, and C. S. Ezell (1984) A circular waveguide irradiation system for nonhuman primates: Design and dosimetry. Bioelectromagnetics 5: 79.

    Article  Google Scholar 

  • Phillips, R. D., E. L. Hunt, and N. W. King (1975) Field measurements, absorbed dose, and biological dosimetry of microwaves. Ann. N.Y. Acad. Sci. 247: 499.

    Article  Google Scholar 

  • Poggio, A. J., and E. K. Miller (1973) Integral equation solution of three-dimensional scattering problems. In: Computer Techniques for Electromagnetics, R. Mittra (ed.). Pergamon Press, New York, p. 159.

    Google Scholar 

  • Pogorzelski, R. J., and T. K. Wu (1977) Computations of scattering from inhomogeneous penetrable elliptic cylinders by means of invariant imbedding. URSI Symp. Electromagnetic Wave Theory, Stanford, p. 323.

    Google Scholar 

  • Rowlandson, G. I., and P. W. Barber (1979) Absorption of high frequency RF energy by biological models: Calculations based on geometrical optics. Radio Sci. 14: 43S.

    Article  Google Scholar 

  • Rukspollmuang, S., and K. M. Chen (1979) Heating of spherical vs. realistic models of human and infrahuman heads by electromagnetic waves. Radio Sci. 14: 51.

    Article  Google Scholar 

  • Schelkunoff, S. A. (1951) Field equivalence theorems. Commun. Pure Appl. Math. 4:43. Schwan, H. P. (1957) Electrical properties of tissues and cell suspensions. Adv. Biol. Med. Phys. 4: 147.

    Google Scholar 

  • Schwan, H. P. (1958) Survey of microwave absorption characteristics of body tissues. In: Proceedings of the Second Annual Tri-service Conference on Biological Effects of Microwave Energy, E. G. Pattishall and F. W. Banghart (eds.). University of Virginia, Charlottesville, p. 126.

    Google Scholar 

  • Schwan, H. P. (1968) Microwave biophysics. In: Microwave Power Engineering, E. C. Okress (ed.). Academic Press, New York, p. 213.

    Google Scholar 

  • Schwan, H. P., and K. R. Foster (1980) RF-field interaction with biological systems: Electrical properties and biophysical mechanisms. Proc. IEEE 68: 104.

    Article  Google Scholar 

  • Schwan, H. P., and K. Li (1956) Hazards due to total body irradiation by radar. Proc. IRE 44: 1572.

    Article  Google Scholar 

  • Schwan, H. P., and G. M. Piersol (1954) The absorption of electromagnetic energy in body tissues, a review and critical analysis. Part I. Biophysical aspects. Am. J. Phys. Med. 33: 371.

    Google Scholar 

  • Segal, A. S. (1981) The Design and Characterization of a Crawford Cell Animal Exposure Facility for Dosimetric Measurements Between 225 and 500 MHz. M.S., E.E. thesis, University of Illinois, Urbana—Champaign.

    Google Scholar 

  • Shapiro, A. R., R. F. Lutomirski, and H. T. Yura (1971) Induced fields and heating within a cranial structure irradiated by an electromagnetic plane wave. IEEE Trans. Microwave Theory Tech. MTT-19: 187.

    Article  Google Scholar 

  • Stratton, J. A. (1941) Electromagnetic Theory. McGraw—Hill, New York.

    MATH  Google Scholar 

  • Taflove, A. (1980) Application of the finite-difference time domain method to sinusoidal steady-state electromagnetic-penetration problems. IEEE Trans. Electromagn. Compat. 22:191

    Article  Google Scholar 

  • Taflove, A., and M. E. Brodwin (1975a) Numerical solution of steady-state EM scattering problems using the time dependent Maxwell’s equation. IEEE Trans. Microwave Theory Tech. MTT-23: 623.

    Article  Google Scholar 

  • Taflove, A., and M. E. Brodwin (1975b) Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Trans. Microwave Theory Tech. MTT-23: 888.

    Article  Google Scholar 

  • Taflove, A., and J. C. Lin (1981) Finite difference time domain computation of microwave absorption in models of biological bodies. Abstracts of Bioelectromagnetics Society Annual Meeting, Washington, D.C., p. 62.

    Google Scholar 

  • Taflove, A., and K. Umashankar (1982) A hybrid moment method/finite difference time domain approach to electromagnetic coupling and aperture penetration into complex geometries. IEEE Trans. Antennas Propag. 30: 617.

    Article  Google Scholar 

  • Waterman, P. C. (1965) Matrix formulation of electromagnetic scattering. Proc. IEEE 53: 805.

    Article  Google Scholar 

  • Weil, C. M. (1975) Absorption characteristics of multi-layered sphere models exposed to UHF/microwave radiation. IEEE Trans. Biomed. Eng. BME-22: 468.

    Article  MathSciNet  Google Scholar 

  • Wu, C. L., and J. C. Lin (1977) Absorption and scattering of EM waves by prolate spheroidal models of biological structures. IEEE AP-S Int. Symp., Stanford, Calif., p. 142.

    Google Scholar 

  • Wu, T. K. (1979) Electromagnetic fields and power deposition in body of revolution models of man. IEEE Trans. Microwave Theory Tech. MIT-27: 279.

    Google Scholar 

  • Wu, T. K., and L. L. Tsai (1977a) Scattering from arbitrary-shaped lossy dielectric bodies of revolution. Radio Sci. 12: 709.

    Article  Google Scholar 

  • Wu, T. K., and L. L. Tsai (1977b) Electromagnetic fields induced inside arbitrary cylinders of biological tissue. IEEE Trans. Microwave Theory Tech. MTT-25: 61.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michaelson, S.M., Lin, J.C. (1987). Propagation and Absorption in Tissue Media. In: Biological Effects and Health Implications of Radiofrequency Radiation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4614-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4614-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3202-0

  • Online ISBN: 978-1-4757-4614-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics