Skip to main content

Motion sickness

  • Chapter
Vertigo
  • 554 Accesses

Abstract

Motion sickness is induced during passive locomotion in vehicles. It is generated either by unfamiliar body accelerations, to which the person has therefore not adapted, or by an intersensory mismatch involving conflicting vestibular and visual stimuli (Dichgans and Brandt 1973, 1978; Benson 1977; Reason 1978; Brandt and Daroff 1980; Crampton 1990). According to the “mismatch theory” (see also p. 4), spatial orientation and perception of movement are disturbed by a conflict between stimuli, when the multisensory motion signals do not correspond to the expected pattern of sensory signals established from earlier experience with active locomotion. This may give rise to unpleasant illusions of movement with consequences for posture and vehicle control (Dichgans and Brandt 1978; Leibowitz et al. 1982) and result in motion sickness due to summation. This simple “sensory conflict” theory of motion sickness has been questioned by those who argue that there is no principled basis on which this concept can distinguish between nauseogenic and non-nauseogenic stimulus situations (Stoffregen and Riccio 1991; Riccio and Stoffregen 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbusow V, Strupp M, Brandt T (1998) Amiodarone-induced severe, prolonged head-positional vertigo and vomiting. Neurology: 51: 917

    Article  PubMed  CAS  Google Scholar 

  • Armstrong HG (1939) Principles and practice of aviation medicine. Williams and Wilkins, Baltimore

    Google Scholar 

  • Babkin BP, Bornstein MB (1943) The effect of swinging and of binaural galvanic stimulation on the motility of the stomach in dogs. Rev Can Biol 2: 336

    Google Scholar 

  • Baker PCH, Bernat JL (1985) The neuroanatomy of vomiting in man: association of projectile vomiting with a solitary metastasis in the lateral tegmentum of the pons and the middle cerebellar peduncle. J Neurol Neurosurg Psychiatry 48: 1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Balaban CD, Porter JD (1998) Neuroanatomic substrates for vestibulo-autonomic interactions. J Vestib Res 8: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Banta GR, Ridley WC, McHugh J, Grissett JD, Guedry FE (1987) Aerobic fitness and susceptibility to motion sickness. Aviat Space Environ Med 58: 105–108

    PubMed  CAS  Google Scholar 

  • Barabas G, Matthews WS, Ferrari M (1983) Childhood migraine and motion sickness. Pediatrics 72: 188–190

    PubMed  CAS  Google Scholar 

  • Barabas G, Matthews WS, Ferrari M (1984) Motion sickness in children with Tourette’s syndrome. Ann Neurol 15: 309

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten RJ von, Thümler R (1979) A model for vestibular function in altered gravitational states. In: Holmquist R (ed) (Cospar) Life sciences and space research. Pergamon Press, Oxford, pp 161–170

    Google Scholar 

  • Baumgarten RJ von, Baldrighi G, Vogel H, Thümler R (1980) Physiological response to hyper-and hypogravity during rollercoaster flight. Aviat Space Environ Med 51: 145–154

    Google Scholar 

  • Benson AJ (1973) Physical characteristics of stimuli which induce motion sickness, a review. IAM Rep 532: 1–20

    Google Scholar 

  • Benson AJ (1977) Possible mechanisms of motion and space sickness. Proceedings of the European symposium on life sciences research in space. European Space Agency SP-130: 101–108

    Google Scholar 

  • Borison HL, Wang SC (1949) Functional localization of central coordinating mechanism for emesis in cat. J Neurophysiol 12: 305–313

    PubMed  CAS  Google Scholar 

  • Brandt Th (1976) Optisch-vestibuläre Bewegungskrankheit, Höhenschwindel and klinische Schwindelformen. Fortschr Med 94: 1177–1182

    PubMed  CAS  Google Scholar 

  • Brandt Th, Daroff RB (1980) The multisensory physiological and pathological vertigo syndromes. Ann Neurol 7: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Brandt Th, Wist ER, Dichgans J (1971) Optisch induzierte PseudoCoriolis-Effekte and Circularvektion: Ein Beitrag zur optischvestibulären Interaktion. Arch Psychiat Nervenkr 214: 365–389

    Google Scholar 

  • Brandt Th, Dichgans J, König E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16: 476–491

    Article  PubMed  CAS  Google Scholar 

  • Brandt Th, Dichgans J, Wagner W (1974) Drug effectiveness on experimental optokinetic and vestibular motion sickness. Aerospace Med 45: 1291–1297

    PubMed  CAS  Google Scholar 

  • Brandt Th, Wenzel D, Dichgans J (1976) Die Entwicklung der visuellen Stabilisation des aufrechten Standes beim Kind: Ein Reifezeichen in der Kinderneurologie. Arch Psychiat Nervenkr 223: 1–13

    Google Scholar 

  • Brizzee KR, Igarashi M (1986) Effect of macular ablation on frequency and latency of motion induced emesis in the squirrel monkey. Aviat Space Environ Med 57: 1066–1070

    PubMed  CAS  Google Scholar 

  • Brown JH, Crampton GH (1966) Concomitant visual stimulation does not alter habituation of nystagmic, oculogyral or psychophysical responses to angular acceleration. Acta Otolaryngol (Stockh) 61: 80–91

    Article  CAS  Google Scholar 

  • Bruner JM (1955) Seasickness in a destroyer escort squadron. US Armed Forces Med J 6: 469–490

    CAS  Google Scholar 

  • Chinn HI, Smith PK (1955) Motion sickness. Pharmacol Rev 7: 33–83

    PubMed  CAS  Google Scholar 

  • Colehour JK (1965) Stress measurements in normal and labyrinthine defective subjects in unusual force environments. In: The role of vestibular organs in the exploration of space. NASA, Sp-77, Washington DC, pp 347–355

    Google Scholar 

  • Collins WE, Schroeder DJ, Elam GW (1982) A comparison of some effects of three antimotion sickness drugs on nystagmic responses to angular accelerations and to optokinetic stimuli. Aviat Space Environ Med 53: 1182–1189

    PubMed  CAS  Google Scholar 

  • Corcoran ML, Fox RA, Daunton NG (1990) The susceptibility of rhesus monkeys to motion sickness. Aviat Space Environ Med 61: 807–809

    PubMed  CAS  Google Scholar 

  • Cowings PS, Toscano WB (1982) The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression. Aviat Space Environ Med 53: 570–575

    PubMed  CAS  Google Scholar 

  • Crampton GH (1990) Motion and space sickness. CRC Press, Boca Raton

    Google Scholar 

  • Crum Brown A (1874) On the sense of rotation and the anatomy and physiology of the semicircular canal of the internal ear. J Anat Physiol 8: 327–331

    Google Scholar 

  • Cummings AJ (1958) The physiology of symptoms: III Nausea and vomiting. Am J Digest Dis 3: 710–721

    Article  Google Scholar 

  • Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59: 1185–1189

    PubMed  CAS  Google Scholar 

  • Denise P, Etard O, Zupan L, Darlot C (1996) Motion sickness during off-vertical axis rotation: prediction by a model of sensory interactions and correlation with other forms of motion sickness. Neurosci Lett 203: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Desnoes P (1926) Seasickness. JAMA 86: 319–324

    Article  Google Scholar 

  • Dichgans J, Brandt Th (1973) Optokinetic motion sickness and pseudo-Coriolis-effects induced by moving visual stimuli. Acta Otolaryngol (Stockh) 76: 339–348

    Article  CAS  Google Scholar 

  • Dichgans J, Brandt Th (1978) Visual-vestibular interaction: Effects on self-motion perception and postural control. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology, vol Vlll, Perception. Springer, Berlin Heidelberg New York, pp 755–804

    Google Scholar 

  • DiZio P, Lackner JR (1991) Motion sickness susceptibility in parabolic flight and velocity storage activity. Aviat Space Environ Med 62: 300–307

    PubMed  CAS  Google Scholar 

  • Dobie TG, May JG (1994) Cognitive-behavioral management of motion sickness. Aviat Space Environ Med (Suppl 10 ) 65: C1–C20

    Google Scholar 

  • Doweck I, Gordon CR, Spitzer O, Melamed Y, Shupak A (1994) Effect of cinnarizine in the prevention of seasickness. Aviat Space Environ Med 65: 606–609

    PubMed  CAS  Google Scholar 

  • Fukuda T (1975) Postural behaviour in motion sickness. Acta Otolaryngol (Stockh) 330: 9–14

    Article  CAS  Google Scholar 

  • Gay LN, Carliner PE (1949) The prevention and treatment of motion sickness. 1. Sea sickness. Bull Johns Hopkins Hosp 84: 470–487

    Google Scholar 

  • Gierke HE von, Parker DE (1994) Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med 65: 747–751

    Google Scholar 

  • Golding JF, Markey HM (1996) Effect of frequency of horizontal linear oscillation on motion sickness and somatogravic illusion. Aviat Space Environ Med 67: 121–126

    PubMed  CAS  Google Scholar 

  • Golding JF, Stott JRR (1997) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res 7: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Goltz F (1870) Über die physiologische Bedeutung der Bogengänge des Ohrlabyrinths. Pflügers Arch Ges Physiol 3: 172–192

    Article  Google Scholar 

  • Gordon CR, Ben-Aryeh H, Spitzer O, Doweck I, Gonen A, Melamed Y, Shupak A (1994) Seasickness susceptibility, personality factors, and salivation. Aviat Space Environ Med 65: 610–614

    PubMed  CAS  Google Scholar 

  • Gordon CR, Spitzer O, Doweck I, Melamed Y, Shupak A (1995) Clinical features of mal de debarquement: adaptation and habituation to sea conditions. J Vestib Res 5: 363–369

    Article  PubMed  CAS  Google Scholar 

  • Gordon CR, Spitzer O, Doweck I, Shupak A, Gadoth N (1996) The vestibulo-ocular reflex and seasickness susceptibility. J Vestib Res 6: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Graybiel A (1964) Vestibular sickness and some of its implications for space flight. In: Fields WS, Alfords BR (eds) Neurological aspects of auditory and vestibular disorders. CC Thomas, Springfield, Ill

    Google Scholar 

  • Graybiel A (1970) Susceptibility to acute motion sickness in blind persons. Aerospace Med 41: 650–653

    PubMed  CAS  Google Scholar 

  • Graybiel A (1979) Prevention and treatment of space sickness in shuttle-orbiter missions. Aviat Space Environ Med 50: 171–176

    PubMed  CAS  Google Scholar 

  • Graybiel A, Miller EF, Homick JL (1977) Experiment M 131: Human vestibular function. In: Biomedical results from skylab, NASA Sp. 377, Washington DC, pp 74–103

    Google Scholar 

  • Graybiel A, Wood CD, Miller EF, Cramer DB (1968) Diagnostic criteria for grading the severity of acute motion sickness. Aerospace Med 39: 453–455

    PubMed  CAS  Google Scholar 

  • Guedry SE (1965) Orientation of the rotation-axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol (Stockh) 60: 30–48

    Article  Google Scholar 

  • Häusler R (1995) Ski sickness. Acta Otolaryngol (Stockh) 115: 1–2

    Article  Google Scholar 

  • Hill J (1937) The care of the seasick. Br Med J: 802–807

    Google Scholar 

  • Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip ( Wechselwirkungen zwischen Zentralnervensystem and Peripherie ). Naturwissenschaften 37: 464–476

    Google Scholar 

  • Holtmann S, Clarke AH, Scherer H, Höhn M (1989) The anti-motion sickness mechanism of ginger. Acta Otolaryngol (Stockh) 108: 168–174

    Article  CAS  Google Scholar 

  • Igarashi M, Isago H, 0-Uchi T, Kulecz WB, Homick JL, Reschke MF (1983) Vestibular-visual conflict sickness in the squirrel monkey. Acta Otolaryngol (Stockh) 95: 193–198

    Article  CAS  Google Scholar 

  • Igarashi M, Kobayashi K, Kulecz WB, Isago H (1986a) Vestibular-visual conflict in pitch and yaw planes in the squirrel monkey. Aviat Space Environ Med 57: 1071–1074

    PubMed  CAS  Google Scholar 

  • Igarashi M, Kobayashi K, Kulecz WB, Himi T (1986b) Changes in susceptibility to vestibular-visual conflict sickness in monkeys by repeated exposure. Acta Otolaryngol (Stockh) 102: 432–437

    Article  CAS  Google Scholar 

  • Irwin JA (1881) The pathology of seasickness. Lancet 2: 907–909

    Article  Google Scholar 

  • Isaacs B (1957) The influence of head and body position on the emetic action of apomorphine in man. Clin Sci 16: 215–221

    PubMed  CAS  Google Scholar 

  • Isu N, Yanagihara MA, Mikuni T, Koo J (1994) Coriolis effects are principally caused by gyroscopic angular acceleration. Aviat Space Environ Med 65: 627–631

    PubMed  CAS  Google Scholar 

  • James W (1882) The sense of dizziness in deaf-mutes. Am J Otol 4: 239–254

    Google Scholar 

  • Johnson WH, Taylor NBG (1961) The importance of head movements in studies involving stimulation of the organ of balance. Acta Otolaryngol (Stockh) 53: 211–218

    Article  CAS  Google Scholar 

  • Johnson WH, Meek JC, Graybiel A (1962) Effects of labyrinthectomy on canal sickness in squirrel monkey. Ann Otol Rhinol Laryngol 71: 289–298

    PubMed  CAS  Google Scholar 

  • Jozsvai EE, Pigeau RA (1996) The effect of autogenic training and biofeedback on motion sickness tolerance. Aviat Space Environ Med 67: 963–968

    PubMed  CAS  Google Scholar 

  • Kamath B, Curran J, Hawkey C, Beattie A, Gorbutt N, Guiblin H, Kong A (1990) Anaesthesia, movement and emesis. Br J Anaesth 64: 728–730

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RS, Graybiel A, McDonough RC, Beckwith FD (1968) Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinth defects. Acta Otolaryngol (Stockh) 66: 533–540

    Article  CAS  Google Scholar 

  • Kennedy RS, Lane NE, Lilienthal MG Berbaum KS, Hettinger LJ (1992) Profile analysis of simulator sickness symptoms: application to virtual environment systems. Presence 1: 295–301

    Google Scholar 

  • Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3: 203–220

    Article  Google Scholar 

  • Kurashvili AE (1963) Vestibular reactivity during the cumulative action of slow centripetal accelerations. Office of Technical Services, FTD-MT-63–179

    Google Scholar 

  • Lackner JR, Graybiel A (1974) Elicitation of vestibular side effects by regional vibration of the head. Aerospace Med 45: 1267–1272

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1979) Some influences of vision on susceptibility to motion sickness. Aviat Space Environ Med 50: 1122–1125

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1986a) Sudden emesis following parabolic flight maneuvers: implications for space motion sickness. Aviat Space Environ Med 57: 343–347

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A (1986b) Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviat Space Environ Med 57: 443–448

    PubMed  CAS  Google Scholar 

  • Lackner JR, Graybiel A, DiZio P (1991) Altered sensorimotor control of the body as an etiological factor in space motion sickness. Aviat Space Environ Med 62: 765–771

    PubMed  CAS  Google Scholar 

  • Lawther A, Griffin MJ (1988) A survey of the occurrence of motion sickness amongst passengers at sea. Aviat Space Environ Med 59: 399–406

    PubMed  CAS  Google Scholar 

  • Leger A, Money KE, Landolt JP, Cheung BS, Rodden BE (1981) Motion sickness caused by rotations about earth-horizontal and earth-vertical axes. J Appl Physiol 50: 469–477

    PubMed  CAS  Google Scholar 

  • Leibowitz HW, Post RB, Brandt Th, Dichgans J (1982) Implications of recent developments in dynamic spatial orientation and visual resolution for vehicle guidance. In: Wertheim AH, Wagenaar WA, Leibowitz HW (eds) Tutorials on motion perception. Plenum Press, New York, pp 231–260

    Chapter  Google Scholar 

  • Leigh RJ, Daroff RB (1985) Space motion sickness: Etiological hypotheses and a proposal for diagnostic clinical examination. Aviat Space Environ Med 56: 469–473

    Google Scholar 

  • Llano GA (1955) Airmen against the sea-an analysis of sea survival experiences. Maxwell AFB, Research Studies Institute, ADTIC Publ G-104

    Google Scholar 

  • Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, Leipzig

    Google Scholar 

  • Manning GW, Steward WG (1949) Effect of body position on incidence of motion sickness. J Appl Physiol 1: 619–628

    PubMed  CAS  Google Scholar 

  • Marshall JE, Brown JH (1966) Visual arousal interaction and specificity of nystagmic habituation. US Army Medical Research Laboratory, Fort Knox, Report No 688

    Google Scholar 

  • McCauley ME (1984) Research issues in simulator sickness. Proceedings of a workshop. National Academy Press, Washington, DC

    Google Scholar 

  • McNally WJ, Stuart EA, Morton G (1942) Effect of labyrinthectomy on motion sickness in animals. In: Proceedings of the conference on motion sickness. National Research Council of Canada Toronto, Report No. C-748

    Google Scholar 

  • Mehler WR (1983) Observations on the connectivity of the parvicellular reticular formation with respect to a vomiting centre. Brain Behav Evol 23: 63–80

    Article  PubMed  CAS  Google Scholar 

  • Melvill Jones G, Mandl G (1980) “Motion” sickness due to vision reversal: its disappearance in stroboscopic light. Ann NY Acad Sci 374:303–311

    Google Scholar 

  • Miller AD, Nonaka S, Jakus J (1994) Brain areas essential or nonessential for emesis. Brain Res 647: 255–264

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Nonaka S, Jakus J, Yates BJ (1996) Modulation of vomiting by the medullary midline. Brain Res 737: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Miller EF, Graybiel A (1972) Semicircular canals as a primary etiological factor in motion sickness. Aerospace Med 43: 1065–1074

    PubMed  Google Scholar 

  • Mittelstaedt H (1996) Somatic graviception. Biol Psychol 42:53–74 Money KE (1970) Motion sickness. Physiol Rev 50: 1–39

    Google Scholar 

  • Money KE (1990) Motion sickness and evolution. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton, pp 1–7

    Google Scholar 

  • Money KE, Friedberg 1 (1964) The role of the semicircular canals in causation of motion sickness and nystagmus in the dog. Can J Physiol Pharmacol 42: 793–801

    Article  CAS  Google Scholar 

  • Money KE, Cheung BS (1983) Another function of the inner ear: facilitation of the emetic response to poisons. Aviat Space Environ Med 54: 208–211

    PubMed  CAS  Google Scholar 

  • Mori S, Mitarai G, Takabayashi A, Usui S, Sakakibara M, Nagatomo M, Baumgarten RJ von (1996) Evidence of sensory conflict and recovery in carp exposed to prolonged weightlessness. Aviat Space Environ Med 67: 256–261

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Zheng Y, Umezaki T, Miller AD (1997) Vestibular inputs to bulbar respiratory interneurons in the cat. Neuro Report 8: 3395–3398

    CAS  Google Scholar 

  • Norfleet WT, Degioanni JJ, Calkins DS, Reschke MF, Bungo MW, Kutyna FA, Homick JL (1992) Treatment of motion sickness in parabolic flight with buccal scopolamine. Aviat Space Environ Med 63: 46–51

    PubMed  CAS  Google Scholar 

  • Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol (Stockh) Suppl 392: 1–44

    CAS  Google Scholar 

  • Parker DE, Reschke MF, Gierke HE von, Lessard CS (1987) Effects of proposed preflight adaptation training on eye movements, self-motion perception, and motion sickness, a progress report. Aviat Space Environ Med 58: 42–49

    Google Scholar 

  • Parrot AC (1989) Transdermal scopolamine: a review of its effects upon motion sickness, psychological performance, and physiological functioning. Aviat Space Environ Med 60: 1–9

    Google Scholar 

  • Probst T, Krafczyk S, Büchele W, Brandt T (1982) Visuelle Prävention der Bewegungskrankheit im Auto. Arch Psychiat Nervenkr 231: 409–421

    Article  PubMed  CAS  Google Scholar 

  • Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J Roy Soc Med 71: 819–829

    PubMed  CAS  Google Scholar 

  • Reason JT, Graybiel A (1970) Changes in subjective estimates of well-being during the onset and remission of motion sickness symptomatology in the slow rotation room. Aerospace Med 41: 166–171

    PubMed  CAS  Google Scholar 

  • Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3: 195–240

    Article  Google Scholar 

  • Riding JE (1975) Minor complications of general anaesthesia. Br J Anaesth 47: 91–101

    Article  PubMed  CAS  Google Scholar 

  • Schubert G (1931) Über die physiologischen Auswirkungen der Coriolis-Kräfte bei Trudelbewegungen des Flugzeuges. Acta Otolaryngol (Stockh) 16: 39–47

    Article  Google Scholar 

  • Siniaia MS, Miller AD (1996) Vestibular effects on the upper airway musculature. Brain Res 736: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Sjöberg AA (1931) Experimentelle Studien über den Auslösungsmechanismus der Seekrankheit. Acta Otolaryngol (Stockh) Suppl 14: 136

    Google Scholar 

  • Stern RM, Hu S, Vasey MW, Koch KL (1989) Adaptation to vection-induced symptoms of motion sickness. Aviat Space Environ Med 60: 566–572

    PubMed  CAS  Google Scholar 

  • Stevens SS (1957) On the psychophysical law. Psychol Rev 64: 153–181

    Article  PubMed  CAS  Google Scholar 

  • Stoffregen TA, Riccio GE (1991) An ecological critique of the sensory conflict theory of motion sickness. Ecol Psychol 3: 159–194

    Article  Google Scholar 

  • Stout CS, Toscano WB, Cowings PS (1995) Reliability of psychophysiological responses across multiple motion sickness stimulation tests. J Vestib Res 5: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Ogata M, Miura M (1997) The significance of motion sickness in the vestibular system. J Vestib Res 7: 179–187

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Saito A, Okada Y, Takei Y, Tomizawa I, Uyama K, Kanzaki J (1991) Locomotion and motion sickness during horizontally and vertically reversed vision. Aviat Space Environ Med 62: 136–140

    PubMed  CAS  Google Scholar 

  • Takahashi M, Toriyabe I, Takei Y, Kanzaki J (1994) Study on experimental motion sickness in children. Acta Otolaryngol (Stockh) 114: 231–237

    Article  CAS  Google Scholar 

  • Takeda N, Morita M, Hasegawa S, Horii A, Kubo T, Matsunaga T (1993) Neuropharmacology of motion sickness and emesis. Acta Otolaryngol (Stockh) Suppl 501: 10–15

    Article  CAS  Google Scholar 

  • Tiande Y, Jingshen P (1991) Motion sickness severity under interaction of vection and head movements. Aviat Space Environ Med 62: 141–144

    Google Scholar 

  • Tokola O, Laitinen LA, Aho J, Gothoni G, Vapaatalo H (1984) Drug treatment of motion sickness: scopolamine alone and combined with ephedrine in real and simulated situations. Aviat Space Environ Med 55: 636–641

    PubMed  CAS  Google Scholar 

  • Toscano WV, Cowings PS (1982) Reducing motion sickness: A comparison of autogenic-feedback training and an alternative cognitive task. Aviat Space Environ Med 53: 449–453

    Google Scholar 

  • Treisman, M (1977) Motion sickness: an evolutionary hypothesis. Science 197: 493–495

    Article  PubMed  CAS  Google Scholar 

  • Tyler DB (1946) The influence of placebo, body position, and medication on motion sickness. Am J Physiol 146: 458–466

    PubMed  CAS  Google Scholar 

  • Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369 Umezaki T, Zheng Y, Shiba K, Miller AD (1997) Role of nucleus retroambigualis in respiratory reflexes evoked by superior laryngeal and vestibular nerve afferents and in emesis. Brain Res 769: 347–356

    Google Scholar 

  • Wang SC, Chinn HJ (1956) Experimental motion sickness in dogs. Importance of labyrinth and vestibular cerebellum. Am J Physiol 185: 617–623

    Google Scholar 

  • Watcha MF, White PF (1992) Postoperative nausea and vomiting. Its etiology, treatment, and prevention. Anesthesiology 77: 162–184

    Google Scholar 

  • Wood CD, Graybiel A (1968) Evaluation of sixteen anti-motion sickness drugs under controlled laboratory conditions. Aerospace Med 39: 1341–1344

    PubMed  CAS  Google Scholar 

  • Wood CD, Graybiel A (1970) Evaluation of anti-motion sickness drugs: A new effective remedy revealed. Aerospace Med 41: 932–933

    Google Scholar 

  • Wood CD, Graybiel A, McDonough R (1966a) Human centrifuge studies on the relative effectiveness of some anti-motion sickness drugs. Aerospace Med 37: 187–190

    PubMed  CAS  Google Scholar 

  • Wood CD, Graybiel A, Kennedy RS (1966b) Comparison of effectiveness of some antimotion sickness drugs using recommended and larger than recommended doses as tested in the slow rotation room. Aerospace Med 37: 259–262

    PubMed  CAS  Google Scholar 

  • Wood CD, Kennedy RE, Graybiel A, Trumbull R, Wherry RJ (1966c) Clinical effectiveness of anti-motion sickness drugs. JAMA 198: 1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Wood CD, Manno JE, Manno BR, Redetzki HM, Wood M, Vekovius A (1984) Side effects of antimotion sickness drugs. Aviat Space Environ Med 55: 113–116

    PubMed  CAS  Google Scholar 

  • Wood CD, Stewart JJ, Wood MJ, Manno JE, Manno BR, Mims ME (1990) Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness. Aviat Space Environ Med 61: 157–161

    PubMed  CAS  Google Scholar 

  • Woodman PD, Griffin MJ (1997) Effect of direction of head movement on motion sickness caused by Coriolis stimulation. Aviat Space Environ Med 68: 93–98

    PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD (1996) Vestibular respiratory regulation. In: Miller AD, Bianchi AL, Bishop BP (eds) Neural control of the respiratory muscles. CRC Press, Boca Raton, pp 271–282

    Google Scholar 

  • Yates BJ, Miller AD (1998) Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res 8: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Umezaki T, Nakazawa K, Miller AD (1997) Role of pre-inspiratory neurons in vestibular and laryngeal reflexes and in swallowing and vomiting. Neurosci Lett 225: 161–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London

About this chapter

Cite this chapter

Brandt, T. (2003). Motion sickness. In: Vertigo. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3801-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3801-8_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40500-1

  • Online ISBN: 978-1-4757-3801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics