Skip to main content

Abstract

Some communication links, notably optical channels operating at very low power, are best modeled using quantum mechanics. Quantum signals are not described by stochastic processes, so that the classical theory of detection must be modified to deal with “quantum states”. Interest in such problems has risen in recent years due to the increasing attention on quantum information processing in general. This chapter reviews the basic mathematical formalism of quantum detection, and discusses several existing approaches to detector design. Both the Bayesian theory developed in the 70’s and more recent techniques are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Adami, ”Von Neumann capacity of noisy quantum channels,” Physical Review A, vol. 56, pp. 3470–3483, 1997.

    Article  MathSciNet  Google Scholar 

  2. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, vol. 2, Ungar, New York, 1963.

    Google Scholar 

  3. A. E. Allahverdyan and D. B. Saakian, Multi-access channels in quantum information theory, 1997. (e-print quant-ph/9712034).

    Google Scholar 

  4. A. E. Allahverdyan and D. B. Saakian, The broadcast quantum channel for classical information transmission, 1998. (e-print quantph/9805067).

    Google Scholar 

  5. J.-P. Aubin, Applied Functional Analysis, Wiley, New York, 2000.

    Book  MATH  Google Scholar 

  6. M. Ban, K. Kurokawa, R. Momose, and O. Hirota, ”Optimum measurements for discrimination among symmetric quantum states and parameter estimation,” International Journal of Theoretical Physics, vol. 36, 1269–1288, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. M. Barnett, ”Quantum information via novel measurements,” Phil. Trans. R. Soc. Lond. A, vol. 355, pp. 2279, 1997.

    Article  Google Scholar 

  8. H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, ”Noncommuting mixed states cannot be broadcast,” Physical Review Letters, vol. 76, pp. 2818, 1996.

    Article  Google Scholar 

  9. H. Barnum, M. A. Nielsen, and B. Schumacher, ”Information transmission through a noisy quantum channel,” Phys. Rev. A, vol. 57, pp. 4153–4175, 1998.

    Article  Google Scholar 

  10. V. P. Belavkin, ”Optimum distinction of non-orthogonal quantum signals,” Radiotekhnika i Elektronika, vol. 20, 1177, 1975.

    Google Scholar 

  11. V. P. Belavkin, English version: Radio Engineering and Electronic Physics, vol. 20, p. 39.

    Google Scholar 

  12. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Mechanics, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  13. C. H. Bennett and P. W. Shor, ”Quantum information theory,” IEEE Trans. Inform. Theory, vol. 44, pp. 2724, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Blank, P. Exner, and M. Havlicek, Hilbert Space Operators in Quantum Physics, AIP Press, New York, 1994.

    MATH  Google Scholar 

  15. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.

    Book  MATH  Google Scholar 

  16. C. M. Caves and P. D. Drummond, ”Quantum limits in bosonic communication rates,” Reviews of Modern Physics, vol. 68, pp. 481, 1994.

    Article  Google Scholar 

  17. A. Chefles, ”Unambiguous discrimination between linearly independent quantum states,” Physics Letters A, vol. 239, pp. 339–347, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Chefles, ”Quantum state discrimination. Contemporary Physics,” vol. 41, pp. 401–424, 2000.

    Article  Google Scholar 

  19. A. Chefles and S. Barnett, ”Strategies for discriminating between non-orthogonal quantum states,” Journal of Modern Optics, vol. 45, 1295–1302, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. I. Concha and H. V. Poor, ”An optimality property of the squareroot measurement for mixed states,” Sixth International Conference on Quantum Communication, Measurement and Computing, MIT, Cambridge, MA, July 22–26 2002.

    Google Scholar 

  21. J. I. Concha and H. V. Poor, ”Multiuser detection in quantum channels,” Proc. IEEE Intern. Symp. on Inform. Theory, pp. 276, Sorrento, Italy, June 25–30, 2000.

    Google Scholar 

  22. J. I. Concha and H. V. Poor, ”Least-squares detectors in quantum channels,” Proceedings of the 39th Annual Allerton Conference on Communications, Control, and Computing, pp. 328–337, University of Illinois, Urbana, IL, October 3–5, 2001.

    Google Scholar 

  23. J. Conway, A Course in Functional Analysis, Springer, New York, 2nd edition, 1990.

    MATH  Google Scholar 

  24. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991.

    Book  MATH  Google Scholar 

  25. E. B. Davies, ”Information and quantum measurement,” IEEE Trans. Inform. Theory, vol. 24, pp. 596, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. C. Eldar and G. David Forney, Jr., ”On quantum detection and the square-root measurement,” IEEE Trans. Inform. Theory, vol. 47, pp. 858–872, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. C. Eldar, A. Megretski, and G. C. Verghese, Designing optimal quantum detectors via semidenite programming, 2002. (e-print quant-ph/0205178).

    Google Scholar 

  28. C. W. Gardiner and P. Zoller, Quantum Noise, Springer, Berlin; Heidelberg, 2nd edition, 2000.

    MATH  Google Scholar 

  29. C. W. Groetsch, Generalized Inverses of Linear Operators, Dekker, New York, 1977.

    MATH  Google Scholar 

  30. R. O. Harger, editor, Optical Communication Theory, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1977.

    Google Scholar 

  31. P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. Wootters, ”Classical information capacity of a quantum channel,” Physical Review A, vol. 54, pp. 1869, 1996.

    Article  MathSciNet  Google Scholar 

  32. P. Hausladen and W. K. Wootters, ”A ‘pretty good’ measurement for distinguishing quantum states,” Journal of Modern Optics, vol. 41, pp. 2385, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, ”An interior point method for semidenite programming,” SIAM J. Optim., vol. 6, pp. 342–361, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York, 1976.

    Google Scholar 

  35. C. W. Helstrom, ”Bayes-cost reduction algorithm in quantum hypothesis testing,” IEEE Trans. Inform. Theory, vol. 28, pp. 359, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. S. Holevo, ”Statistical decision theory for quantum systems,” J. Multivar. Anal., vol. 3, pp. 337–394, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  38. A. S. Holevo, ”The capacity of the quantum channel with general signal states,” IEEE Trans. Inform. Theory, vol. 44, pp. 269, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Horn and C. Johnson, Matrix Analysis, Cambdridge University Press, New York, 1985.

    MATH  Google Scholar 

  40. M. Huang, Y. Zhang, and G. Hou, ”Classical capacity of a quantum multiple-access channel,” Phys. Rev. A, vol. 62, pp. 052–106, 2000.

    Google Scholar 

  41. B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and N. Gisin, ”Unambiguous quantum measurement of nonorthogonal states,” Physical Review A, vol. 54, pp. 3783–3789, 1996.

    Article  MathSciNet  Google Scholar 

  42. B. Huttner and A. Peres, ”Quantum cryptography with photon pairs,” Journal of Modern Optics, vol. 41, pp. 2397–2403, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  43. I. D. Ivanovic, ”How to differentiate between non-orthogonal states,” Physics Letters A, vol. 123, pp. 257–259, 1987.

    Article  MathSciNet  Google Scholar 

  44. A. S. Kholevo, ”Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9(3), 1973. English version: Problems of Information Transmission, vol. 9(3), pp. 177.

    MathSciNet  Google Scholar 

  45. A. S. Kholevo, ”On asymptotically optimal hypothesis testing in quantum statistics,” Teoriia Veroiatnostei I Ee Primeneniia, vol. 23, pp. 429–433, 1978.

    MathSciNet  MATH  Google Scholar 

  46. A. S. Kholevo, English version: Theory of Probability and its Applications, vol. 23, pp. 411–415.

    Google Scholar 

  47. A. S. Kholevo, ”Capacity of a quantum communications channel,” Problemy Peredachi Informatsii, vol. 15(4), 1979. English version: Problems of Information Transmission, vol. 15(4), pp. 247.

    MathSciNet  Google Scholar 

  48. K. Kraus, ”General state changes in quantum theory,” Ann. Physics, vol. 64, pp. 311–335, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Lloyd, ”Capacity of the noisy quantum channel,” Physical Review A, vol. 55, pp. 1613, 1997.

    Article  MathSciNet  Google Scholar 

  50. D. G. Luenberger, Optimization by Vector Space Methods, Wiley, 1969.

    MATH  Google Scholar 

  51. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  52. J. Mizuno, M. Fujiwara, M. Akiba, T. Kawanishi, S. M. Barnett, and M. Sasaki, ”Optimum detection for extracting maximum information from symmetric qubit sets,” Physical Review A, vol. 65, pp. 12315, 2001.

    Article  Google Scholar 

  53. L. Nelson and H. V. Poor, ”Performance of multiuser detection for optical CDMA—Part I: error probabilities,” IEEE Trans. Communications, vol. 43, pp. 2803, 1995.

    Article  MATH  Google Scholar 

  54. R. Omnes, The Interpretation of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1994.

    MATH  Google Scholar 

  55. M. Osaki, M. Ban, and O. Hirota, ”On maximum mutual information without coding,” In P. Kumar, G. M. D’Ariano, and O. Hirota, editors, Quantum communication, computing and measurement 2. Kluwer, 1998.

    Google Scholar 

  56. A. Peres, ”Neumark’s theorem and quantum inseparability,” Foundations of Physics, vol. 20, pp. 1441–1453, 1990.

    Article  MathSciNet  Google Scholar 

  57. A. Peres, Quantum Theory : Concepts and Methods, Kluwer Academic, Dordrecht, 1993.

    MATH  Google Scholar 

  58. A. Peres and W. K. Wootters, ”Optimal detection of quantum information,” Physical Review Letters, vol. 66, pp. 1119–1122, 1991.

    Article  Google Scholar 

  59. H. V. Poor, An Introduction to Signal Detection and Estimation, Springer, New York, 2nd edition, 1994.

    Book  MATH  Google Scholar 

  60. J. Proakis, Digital Communications, McGraw-Hill, New York, 4th edition, 2000.

    Google Scholar 

  61. M. Sasaki, S. M. Barnett, R. Jozsa, M. Osaki, and O. Hirota, ”Accessible information and optimal strategies for real symmetrical quantum sources,” Physical Review A, vol. 59, pp. 3325, 1999.

    Article  Google Scholar 

  62. B. Schumacher, ”Sending entanglement through noisy quantum channels,” Physical Re- view A, vol. 54, pp. 2614, 1996.

    Article  Google Scholar 

  63. B. Schumacher and M. D. Westmoreland, ”Sending classical information via noisy quantum channels,” Physical Review A, vol. 56, pp. 131, 1997.

    Article  Google Scholar 

  64. P. W. Shor, ”Scheme for reducing decoherence in quantum computer memory,” Physical Review A, vol. 52, pp. 2493, 1995.

    Article  Google Scholar 

  65. P. W. Shor, ”Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal of Computing, vol. 26, pp. 1484–1509, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  66. R. L. Stratonovich, ”An approximate method for the derivation of optimum resolution of quantum signals in the presence of small interference,” Radiotekhnika i Elektronika, 21(4), 1976. English version: Radio Engineering and Electronic Physics, vol. 21(4), pp. 61–67.

    Google Scholar 

  67. R. L. Stratonovich, ”Optimum resolution of non-orthogonal quantum signals in the presence of small Gaussian interference,” Radiotekhnika i Elektronika, 21(3), 1976. English version: Radio Engineering and Electronic Physics, vol. 21(3), p. 71–77.

    MathSciNet  Google Scholar 

  68. Y. Sun, M. Hillery, and J. A. Bergou, ”Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization,” Physical Review A, vol. 64, pp. 22311, 2001.

    Article  Google Scholar 

  69. A. G. Vantsyan and R. L. Stratonovich, ”Methods of distinguishing close quantum signals,” Radiotekhnika i Elektronika, 21(1), 1976. English version: Radio Engineering and Electronic Physics, vol. 21(1), pp. 86.

    Google Scholar 

  70. S. Verdu, Multiuser Detection, Cambdrige University Press, Cambridge, 1998.

    MATH  Google Scholar 

  71. A. Winter, Quantum multiple access channel, 1998. (e-print quantph/9807019).

    Google Scholar 

  72. W. K. Wootters and W. K. Zurek, Nature, vol. 299, pp. 802, 1982.

    Article  Google Scholar 

  73. A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, New York, 5th edition, 1997.

    Google Scholar 

  74. H. P. Yuen, R. S. Kennedy, and M. Lax, ”Optimum testing of multiple hypotheses in quantum detection theory,” IEEE Trans. Inform. Theory, vol. 21, pp. 125, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  75. H. P. Yuen and J. H. Shapiro, ”Optical communication with twophoton coherent states— Part III: Quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inform. Theory, vol. 26, pp. 78, 1980.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Concha, J.I., Poor, H.V. (2003). Advances in Quantum Detection. In: Bhargava, V.K., Poor, H.V., Tarokh, V., Yoon, S. (eds) Communications, Information and Network Security. The Springer International Series in Engineering and Computer Science, vol 712. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3789-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3789-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5318-6

  • Online ISBN: 978-1-4757-3789-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics