Skip to main content

Surveying Lattice-Ordered Fields

  • Chapter
Ordered Algebraic Structures

Part of the book series: Developments in Mathematics ((DEVM,volume 7))

Abstract

The object of what follows is to give a brief overview of the theory of lattice-ordered fields. While I have included no proofs, I have tried to give ample references for anyone interested in seeing the details. Section 1 briefly sketches the history behind the subject and section 2 recalls some basic definitions. The remainder reviews what is presently known: section 3 describes methods of constructing lattice-ordered fields; section 4 concerns the maximal totally ordered subfield; section 5 considers lattice-ordered fields as vector lattices; section 6 describes representations of lattice-ordered fields by means of power series fields; section 7 discusses the number of different compatible lattice orderings; section 8 deals with extensions to total orders; section 9 investigates the lattice-ordering of simple algebraic extensions of totally ordered fields; and section 10 lists some open questions. Of course not all results are mentioned below. I have chosen those that seem to me to be the most fundamental and the most interesting.

I have cited specific results in one of two ways: if an author has given the n th result in the m th section the number m.n, then I have used that number; otherwise, I have used the number of the page on which the result occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anderson and T. Feil, Lattice-Ordered Groups: An Introduction. (1987) D. Reidel, Dordrecht, ISBN 90–277-2643–4.

    Google Scholar 

  2. E. Artin, Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Hamb. Univ. 5 (1926), 100–115.

    Article  MATH  Google Scholar 

  3. E. Artin and O. Schreier, Algebraische Konstruktion reëler Körper. Abh. Math. Sem. Hamb. Univ. 5 (1926), 85–99.

    Article  MATH  Google Scholar 

  4. A. Bigard, K. Keimei and S. Wolfenstein, Groupes et Anneaux Réticulés. Lecture Notes in Mathematics 608 (1977), Springer-Verlag, Berlin, ISBN 3–540-08436–3.

    MATH  Google Scholar 

  5. G. Birkhoff, Lattice-Ordered Groups. Annals of Math. 43 (1942), 298–331.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Birkhoff, Lattice Theory. 3rd ed. (AMS Coll. Pub. 25) (1973), Amer. Math. Soc, Providence.

    Google Scholar 

  7. G. Birkhoff and R. S. Pierce, Lattice-ordered rings. An. Acad. Brasil Ci. 28 (1956), 41–69.

    MathSciNet  MATH  Google Scholar 

  8. N. Bourbaki, Eléments d’Histoire des Mathématiques. (1969) Hermann, Paris.

    MATH  Google Scholar 

  9. P. Conrad, Generalized semigroup rings. J. Indian Math. Soc. 21 (1957), 73–95.

    MathSciNet  Google Scholar 

  10. P. Conrad, Lattice Ordered Groups. Tulane University (1970), New Orleans.

    MATH  Google Scholar 

  11. P. Conrad and J. Dauns, An embedding theorem for lattice-ordered fields. Pacific J. Math. 3 (1969), 385–398.

    Article  MathSciNet  Google Scholar 

  12. P. Conrad, J. Harvey and W. C. Holland, The Hahn embedding theorem for lattice-ordered groups. Trans. Amer. Math. Soc. 108 (1963), 143–169.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. R. Darnel, The Theory of Lattice-Ordered Groups. (1995) Marcel Dekker, New York, ISBN 0–8247-9326–9.

    Google Scholar 

  14. [14] R. Dedekind, Über Zerlegungen von Zahlen durch ihre grossen ten Gemeinsamen Teiler. Gesammelte Math. Werke, t. II (1931), 103–147; (originally appeared in Festschrift der Techn. Hochsch. zu Braunschweig bei Gelegenheit der 69 Versammlung Deutscher Naturforscher und Ärtze (1897), 1–40.) [15] R. DeMarr, Partially ordered fields. Amer. Math. Monthly 74 (1967), 418–420.

    Google Scholar 

  15. R. DeMarr, A. Steiger, On elements with negative squares. Proc. Amer. Math. Soc. 31 (1972), 57–60.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. W. Dubois, On partly ordered fields. Proc. Amer. Math. Soc. 7 (1956), 918–930.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Freudenthal, Teilweise geordnete moduln. Proc. Ned. Akad. Wet. 39 (1936), 641–651.

    Google Scholar 

  18. L. Fuchs, Partially Ordered Algebraic Systems. (1963) Pergamon Press, Oxford.

    MATH  Google Scholar 

  19. A. M. W. Glass, Partially Ordered Groups. (1999) World Scientific, Singapore, ISBN 981–02-3493–7.

    Book  MATH  Google Scholar 

  20. H. Hahn, Über die nichtarchimedean Grössensysteme. Sitzungber. Kaiserlichen Akad. Wiss. Vienna Math. Nat. Klasse Abt. IIa 116 (1907), 601–653.

    MATH  Google Scholar 

  21. M. Henriksen, On the difficulties in embedding lattice-ordered integral domains in lattice-ordered fields. General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971) (1972) Academia, Prague, 183–185.

    Google Scholar 

  22. S. Kakutani, Concrete representation of abstract (L)-spaces and the mean er-godic theorem. Annals of Math. 42 (1941), 523–537.

    Article  MathSciNet  Google Scholar 

  23. S. Kakutani, Concrete representation of abstract (M)-spaces (a characterization of the space of continuous functions). Annals of Math. 42 (1941), 994–1024.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. V. Kantorovich, Partially ordered linear spaces. (Russian) Mat. Sbornik 2 (44) (1937), 121–168.

    MATH  Google Scholar 

  25. S. MacLane, Categories for the Working Mathematician. (1971) Springer-Verlag, New York, ISBN 0–387-90035–7.

    Google Scholar 

  26. B. Neumann, On ordered division rings. Trans. Amer. Math. Soc. 66 (1949), 202–252.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Prieß-Crampe, Angeordnete Strukturen: Gruppen, Körper, Projektive Ebenen. Ergeb. der Math. u. i. Grenzgeb. 98 (1983) Springer-Verlag, Berlin.

    MATH  Google Scholar 

  28. F. J. Raynor, An algebraically closed field. Glasgow Math. J. 9 (1968) 146–151.

    Article  MathSciNet  Google Scholar 

  29. R. H. Redfield, Algebraic extensions and lattice-ordered fields. Analysis Paper No. 15 (1975) Monash Univ., Clayton, Victoria, Australia.

    Google Scholar 

  30. R. H. Redfield, Embeddings into power series rings. Manuscripta Math. 56 (1986), 247–268.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. H. Redfield, Constructing lattice-ordered fields and division rings. Bull. Austr. Math. Soc. 40 (1989), 365–369.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. H. Redfield, Lattice-ordered fields as convolution algebras. J. Algebra 153 (1992) 319–356.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. H. Redfield, Lattice-ordered power series fields. J. Austr. Math. Soc. (Series A) 52 (1992), 229–321.

    Article  MathSciNet  Google Scholar 

  34. R. H. Redfield, Internal characterizations of lattice-ordered power series fields. Per. Math. Hungarica 32 (1996), 85–101.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. H. Redfield, Abstract Algebra: A Concrete Introduction. (2001) Addison Wesley Longman, Boston, ISBN 0–201-43721-X.

    Google Scholar 

  36. R. H. Redfield, Subfields of lattice-ordered fields that mimic maximal totally ordered subfields. Czech. Math. J. 51 (126) (2001), 143–161.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. H. Redfield, Unexpected lattice-ordered quotient structures. Ordered Algebraic Structures: Nanjing (2001); W. C. Holland, ed.; Gordon and Breach, The Netherlands, ISBN 90–5699-325–9, 111–132.

    Google Scholar 

  38. R. H. Redfield, Letter to Stuart Steinberg. (2001).

    Google Scholar 

  39. P. Ribenboim, Rings of generalized power series: nilpotent elements. Abh. Math. Sem. Univ. Hamburg (Series A) 61 (1991), 15–33.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Ribenboim, Noetherian rings of generalized power series. J. Pure Appl. Algebra 79 (1992), 293–312.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Ribenboim, Rings of generalized power series, II: units and zero-divisors. J. Algebra 168 (1994), 71–89.

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Riesz, Sur quelques notions fondamentales dans la théorie générale des opérations linéaires. Annals of Math 41 (1940), 174–206.

    Article  MathSciNet  Google Scholar 

  43. N. Schwartz, Verbandsgeordnete Körper. (1978) Dissertation, Universität München.

    Google Scholar 

  44. N. Schwartz, Archimedean lattice-ordered fields that are algebraic over their o-subfields. Pacific J. Math. 89 (1980), 189–198.

    Article  MathSciNet  Google Scholar 

  45. N. Schwartz, Lattice-ordered fields. Order 3 (1986), 179–194.

    Article  MathSciNet  MATH  Google Scholar 

  46. J.-P. Serre, Extensions des corps ordonnés. C. R. Acad. Sci. Paris 229 (1949), 576–577.

    MathSciNet  MATH  Google Scholar 

  47. S. Steinberg, An embedding theorem for commutative lattice-ordered domains. Proc. Amer. Math. Soc. 31 (1972), 409–416.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Steinberg, Personal Communication. (1990).

    Google Scholar 

  49. R. R. Wilson, Lattice orderings on fields and certain rings. Symposia Mathematica (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome) 21 (1975), 357–364.

    Google Scholar 

  50. R. R. Wilson, Lattice orderings on the real field. Pacific J. Math. 63 (1976), 571–577.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Redfield, R.H. (2002). Surveying Lattice-Ordered Fields. In: Martínez, J. (eds) Ordered Algebraic Structures. Developments in Mathematics, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3627-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3627-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5225-7

  • Online ISBN: 978-1-4757-3627-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics