Skip to main content

Abstract

Peptides are small number (<50) of units of amino acids covalently linked by the peptide bond. They are smaller in size and lower in molecular weight (<10,000 daltons) than proteins. Peptides also lack tertiary structures. Therefore, they are less prone to immunogenicity. Because target-specific imaging using monoclonal antibodies has proven elusive, imaging using biologically active peptides has raised enthusiasm among scientists and clinicians. This interest is because of the wealth of molecular recognition technology and protein biochemistry that may be applied to the diagnosis of human disease by direct visualization of the specific disease sites. This technology has become possible with the recent advances in imaging devices, protein chemistry, and the understanding of the physiological and pathological roles of protein and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Snyder SM, Bennett JD. Neurotransmitter receptors in the brain: biochemical identification. Annu Rev Physiol 1976;38:153–175.

    Article  PubMed  CAS  Google Scholar 

  2. Yalow RS, Berson SA. Basic considerations and general considerations. In: Odele WD, Daughaday WH, eds. Principles of Competitive Protein Binding Assays. Philadelphia: Lippincott,1971:1.

    Google Scholar 

  3. Wong FCL, Ho B, Lu IG, et al. Affinity labeling of neuroreceptors using gamma rays. J Nucl Med 1993;34(5):26 (abstract).

    Google Scholar 

  4. Wagner HN, Barns HD, Dannals RJ, et al. Imaging human dopamine receptors in the human brain. Science 1983;221:1264–1266.

    Article  PubMed  CAS  Google Scholar 

  5. Wong DF, Wagner HN, Tune LE, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 1986;234:1558–1562.

    Article  PubMed  CAS  Google Scholar 

  6. Wong DF, Pearlson G, Tune LE, et al. In vivo measurements of D2 dopamine receptor abnormalities in drug-naive and treated manic depressive patients. J Nucl Med 1987;28:611 (abstract).

    Google Scholar 

  7. Kung HF, Slavi A, Chang W, et al. In vivo SPECT imaging of CNS D2 dopamine receptors: initial studies with iodine-123 IBZM in humans. J Nucl Med 1990;31:573–578.

    PubMed  CAS  Google Scholar 

  8. Eckelman WC. The testing of putative receptor binding radiotracers in vivo. In: Diksic M, Reba RD, eds. Radiopharmaceuticals and Brain Pathology Studies with PET and SPECT. Boca Raton: CRC Press, 1982:42–62.

    Google Scholar 

  9. Vera DR, Krohn KA, Scheibe PO, et al. Identifiability analysis of an in vivo receptor-binding radiopharmacokinetic system. IEEG Trans Biomed Eng 1985;32(5):312–322.

    Article  CAS  Google Scholar 

  10. Yung BCK, Wand GS, Blevins L, et al. In vivo assessment of dopamine receptor density in pituitary macroadenoma and correlation with in vitro assay. J Nucl Med 1993;34(5):133 (abstract).

    Google Scholar 

  11. Junck L, Olson BS, Ciliax BJ, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding sites. Ann Neurol 1989; 26:752–758.

    Article  PubMed  CAS  Google Scholar 

  12. Raderer M, Bechereer A, Kurtaran A, et al. Comparison of iodine-123-vasoactive intestinal peptide receptor scintigraphy and indium-111 CFT-103 immunoscintigraphy. J Nucl Med 1996; 37(9):1480–1487.

    PubMed  CAS  Google Scholar 

  13. Starosta-Rubinstein S, Ciliax BJ, Penney JB, et al. Imaging of a glioma using peripheral benzodiazepine receptor ligands. Proc Natl Acad Sci USA 1980;84:891–895.

    Article  Google Scholar 

  14. Price GW, Ahier RG, Hume SP, et al. In vivo binding to peripheral benzodiazepine binding sites in lesional rat brain: comparison between [-3H]-P/C11194 and [18F]-PK 14105 as markers for neuronal damages. J Neurochem 1990;55: 175–185.

    Article  PubMed  CAS  Google Scholar 

  15. McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16α-F18-fluoro-17β-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991;32:1526–1531.

    PubMed  CAS  Google Scholar 

  16. Reubi JC, Krenning E, Lamberts SW, et al. Somatostatin receptors in malignant tissues. J Steroid Biochem Mol Biol 1990;37(6):1073–1077.

    Article  PubMed  CAS  Google Scholar 

  17. Lambert SW, Bakker WH, Reubi JC, Krenning EP. Somatostatin receptor imaging in vivo localization of tumors with a radiolabeled somatostatin analog. J Steroid Biochem Mol Biol 1990; 37(60):1079–1082.

    Article  Google Scholar 

  18. Bakker WH, Krenning EP, Breeman WA, et al. Receptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity and in vivo application in animals. J Nucl Med 1990;31:1501–1509.

    PubMed  CAS  Google Scholar 

  19. Faglia G, Bazzoni N, Spado X, et al. In vivo detection of somatostatin receptors in patients with functionless pituitary xadenomas by means of a radioiodinated analog of somatostatin I-123 SD2204–090. J Clin Endocrinol Metab 1991;73:850–856.

    Article  PubMed  CAS  Google Scholar 

  20. Krenning EP, Kwekkeboom DJ, Panwels S, et al. Somatostatin receptor scintigraphy. Nucl Med Ann 1995;15:1–50.

    Google Scholar 

  21. Buscail L, Delesque N, Estéve J, et al. Stimulation of toposine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci USA 1994;91:2315–2319.

    Article  PubMed  CAS  Google Scholar 

  22. Smith-Jones PM, Stolz B, Borms C, et al. Ga67/Ga-68 [DFO] octreotide-a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro as preliminary in vivo studies. J Nucl Med 1994;35:317–325.

    PubMed  CAS  Google Scholar 

  23. Blok D, Feitsma RIJ, Vermeij P, et al. Peptide radiopharmaceuticals in nuclear medicine. Eur J Nucl Med 1999;26:1511–1519.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, F.C.L., Kim, E.E. (2001). Peptide Receptor Imaging. In: Kim, E.E., Yang, D.J. (eds) Targeted Molecular Imaging in Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3505-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3505-5_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3507-9

  • Online ISBN: 978-1-4757-3505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics