Skip to main content

Lessons to better understanding of hypoxia sensing

Acquired and congenital mutations resulting in polycythemia

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 502))

Abstract

Adaptation of the organism to hypoxia has profound effect on multiple tissues including regulation of erythropoiesis, vasculogenesis, a proper regulation of embryogenesis as well as other functions. The elucidation of those congenital or acquired mutations giving rise to disease states affecting physiological systems devoted to oxygen homeostasis provides not only a practical diagnostic and potential therapeutic target, but also allows to identify the essential, non-redundant physiological pathways that may be hitherto unknown. The erythropoietin gene was the first gene expression found to be upregulated by hypoxia; the mechanism of this regulation lead to our current understanding of hypoxia sensing. Thus it is appropriate that the disorders resulting from augmented erythropoiesis are subject of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, and Steinmann L. Polycythemia vera: stem cell and probable clonal origin of the disease. N Engl J Med 295: 913–916, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Andersson P, Le Blanc K, Eriksson BA, and Samuelsson J. No evidence for an altered mRNA expression or protein level or haematopoietic cell phosphate in CD34+ bone marrow progenitor cells or mature peripheral blood cells in polycythemia vera. Eur J Haematol 59:310–317, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Ang SO, Buchannan GR, Gordeuk VR, and Prchal JT. Putative dysregulation in the HIF-oxygen sensing pathway in congenital Chuvash polycythemia. Blood 94 (suppl. 1): 412a, 1999 (abstr.).

    Google Scholar 

  4. Ang SO, Gordeuk VR, Sergeyeva A, and Prchal JT. Chuvash polycythemia: An autosomal recessive disorder of dysregulated oxygen sensing. Blood 96 (suppl. 1): 5a, 2000 (abstr.).

    Google Scholar 

  5. Arcasoy MO, Harris KW, and Forget BG. A human erythropoietin receptor gene mutant causing familial erythrocytosis is associated with deregulation of the rates of Jak2 and Stat5 inactivation. Exp Hematol 27: 63–74, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Asimakopoulos F, Hinshelwood S, Gilbert J, Delibrias C, Gottgens B, Fearon D, and Green A. The gene encoding hematopoietic cell phophatase (SHP-1) is structurally and transcriptionally intact in polycythemia vera. Oncogene 14: 1215–1222, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Brox AG, Congote LF, Fafard J, and Fauser AA. Identification and characterization of an 8-kd peptide stimulating late erythropoiesis. Exp Hematol 17: 769–773, 1989.

    PubMed  CAS  Google Scholar 

  8. Bunn HF and Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885, 1996.

    PubMed  CAS  Google Scholar 

  9. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman, M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, and Keshert E. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490, 1998.

    Article  PubMed  CAS  Google Scholar 

  10. Casadevall N, Vainchenker W, Laconbe C, Vinci G, Chapman J, Breton-Gorius J, and Varet B. Erythroid progenitors in polycythemia vera: Demonstration of their hypersensitivity to erythropoietin using serum free cultures. Blood 59: 447–451, 1982.

    PubMed  CAS  Google Scholar 

  11. Chiba S, Takahashi T, Takeshita K, Minowada J, Yazaki Y, Ruddle FH, and Hirai H. Selective expression of mRNA coding for the truncated form of erythropoietin receptor in hematopoietic cells and its decrease in patients with polycythemia vera. Blood 90: 97–104, 1997.

    PubMed  CAS  Google Scholar 

  12. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh, CW, Ratcliffe PJ, and Maxwell PH. Hypoxia inducible factor-a binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275: 25733–25741, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. Correa PN and Axelrad AA. Production of erythropoietic bursts by progenitor cells from adult human peripheral blood in an improved serum-free medium: Role of insulin-like growth factor I. Blood 78: 2823–2833, 1991.

    PubMed  CAS  Google Scholar 

  14. Correa PN, Eskinazi D, and Axelrad AA. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor I in vitro: studies in an improved serum-free medium. Blood 83: 99–112, 1994.

    PubMed  CAS  Google Scholar 

  15. Dai CH, Krantz SB, Dessypris EN, Means RT, Horn ST, and Gilbert HS. Polycythemia vera II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 80: 891–899, 1992.

    PubMed  CAS  Google Scholar 

  16. Dai CH, Krantz SB, Means RT, Horn ST, and Gilbert HS. Polycythemia vera blood burst forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 87: 391–396, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Dai CH, Krantz SB, and Sawyer ST. Polycythemia vera V. Enhanced proliferation and phosphorylation due to vanadate are diminished in polycythemia vera erythroid progenitor cells: a possible defect of phosphate activity in polycythemia vera. Blood 89: 3574–3581, 1997.

    PubMed  CAS  Google Scholar 

  18. Damen JE, Krosl J, Morrison D, Pelech S, and Krystal G. The hyperresponsiveness of cells expressing truncated erythropoietin receptors is contingent upon insulin-like growth factor-1 in fetal calf serum. Blood 92: 425–433, 1998.

    PubMed  CAS  Google Scholar 

  19. Damen JE, Wakao H, Miyajima A, Krosl J, Humphries RK, Cutler RL, and Krystal G. Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and STAT5 activation. EMBO J 14: 5557–5568, 1995.

    PubMed  CAS  Google Scholar 

  20. D’Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo J-W, and Lodish HF. The cytoplasmic region of the erythropoietin receptor contains non-overlapping positive and negative growth-regulatory domains. Mol Cell Biol 11:1980–1987, 1991.

    PubMed  Google Scholar 

  21. Divoky V, Liu Z, Ryan TM, Prchal JF, Townes TM, and Prchal JT. Mouse model of congenital polycythemia: Homologous replacement of murine gene by mutant human erythropoietin receptor gene. Proc Natl Acad Sci USA 98: 986–991, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Dmitrieva MG, Gazenko LO, and Poliakova LA. Characteristics of the humoral regulation of erythropoiesis in hereditary erythrocytosis in the Chuvash ASSR. Dokl Akad Nauk SSSR 296: 1021–1024, 1987 (Russian).

    PubMed  CAS  Google Scholar 

  23. Ebert BL and Bunn HF. Regulation of the erythropoietin gene. Blood 94: 1864–1877, 1999.

    PubMed  CAS  Google Scholar 

  24. Emanuel PD, Eaves CJ, Broudy VC, Papayannopoulou T, Moore MR, D’ Andrea AD, Prchal JF, Eaves AC, and Prchal JT. Familial and congenital polycythemia in three unrelated families. Blood 79: 3019–3030, 1992.

    PubMed  CAS  Google Scholar 

  25. Fisher M J, Prchal JF, Prchal JT, and D’Andrea AD. Anti-erythropoietin (EPO) receptor monoclonal antibodies distinguish EPO-dependent and EPO-independent erythroid progenitors in polycythemia. Blood 84: 1982–1991, 1994.

    PubMed  CAS  Google Scholar 

  26. Galacteros F, Rosa R, Prehu MO, Najean Y, and Calvin MC. Deficit en diphosphoglycerate mutase: nouveaux cas associes a une Polyglobulie. Nouv Rev Fr Hematol 26: 69–74, 1982 (French).

    Google Scholar 

  27. Gomez AR and Norwood VF. Developmental consequences of the renin-angiotensin system. Am J Kidney Dis 26: 409–431, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Gomez AR. Angiotensin receptors: Relevance in development and disease states. Exp Nephrol 2: 259–268, 1994.

    PubMed  CAS  Google Scholar 

  29. Gregg XT, Liu Y, Prchal JT, Gartland GT, Cooper MD, and Prchal JF. Clonality in myeloproliferative disorders. Blood 88 (suppl. 1): 1905a, 1996 (abstr.).

    Google Scholar 

  30. Gregg XT and Prchal JT. Erythropoietin receptor mutations and human disease. Semin Hematol 34: 70–76, 1997.

    PubMed  CAS  Google Scholar 

  31. Hess G, Rose P, Gamm H, Papadileris S, Huber C, and Seliger B. Molecular analysis of the erythropoietin receptor system in patients with polycythemia vera. Br J Haematol 88: 794–802, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Horikawa Y, Matsumura I, Hashimoto K, Shiraga M, Kosugi S, Tadokoro S, Kato T, Miyazaki H, Tomiyama Y, Kurata Y, Matsuzawa Y, and Kanakura Y. Markedly reduce expression of platelet c-mpl receptor in essential thrombocythemia. Blood 90: 4031–4038, 1997.

    PubMed  CAS  Google Scholar 

  33. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, and Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 a. Genes Dev 12:149–162, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Julian BA, Brantley RR Jr, Barker CV, Stopka T, Gaston RS, Curtis JJ, Lee JY, and Prchal JT. Losartan, an angiotensin II type 1 receptor antagonist, lowers hematocrit in posttransplant erythrocytosis. J Am Soc Nephrol 9: 1104–1108, 1998.

    PubMed  CAS  Google Scholar 

  35. Juvonen E, Ikkala E, Fyhrquist F, and Ruutu T. Autosomal dominant erythrocytosis causes by increased sensitivity to erythropoietin. Blood 78: 3066–3069, 1991.

    PubMed  CAS  Google Scholar 

  36. Katoh O, Kimura A, Itoh T, and Kuramoto A. Platelet derived growth factor messenger RNA is increased in bone marrow megakaryocytes in patients with myeloproliferative disorders. Am J Hematol 35: 145–150, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Klingmuller U, Lorenz U, Cantley LC, Neel BG, and Lodish HF. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80: 729–738, 1995.

    Article  PubMed  CAS  Google Scholar 

  38. Konwalinka G, Geissler D, Peschel C, Breier C., Grunewald K, Odavic R, and Braunsteiner H. Human erythropoiesis in vitro and the source of burst-promoting activity in a serum-free system. Exp Hematol 14: 899–903, 1986.

    PubMed  CAS  Google Scholar 

  39. Kralovics R, Castillos FA, and Prchal JT. Familial polycythemia vera: Mode of inheritance, clonality and genetic analysis of candidate genes and chromosomal regions. Blood 94 (suppl. 1): 113a, 1999 (abstr.).

    Google Scholar 

  40. Kralovics R, Indrak K, Stopka T, Berman BW, Prchal JF, and Prchal JT. Two new EPO receptor mutations: Truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood 90: 2057–2061, 1997.

    PubMed  CAS  Google Scholar 

  41. Kralovics R and Prchal JT. Hematopoietic progenitors and signal transduction in polycythemia vera and primary thrombocythemia. Bailliere’s Clin Haematol 11: 803–818, 1998.

    Article  CAS  Google Scholar 

  42. Kralovics R and Prchal JT. Congenital and inherited polycythemia. Curr. Opin. Pediat 12:29–34, 2000.

    Article  CAS  Google Scholar 

  43. Kralovics R and Prchal JT. Involvement of chromosome 9 and 11 in familial and sporadic polycythemia vera. Exp Hemat 28 (suppl.): 65a, 2000 (abstr.).

    Article  Google Scholar 

  44. Kralovics R and Prchal JT. Genetic heterogeneity of primary familial and congenital polycythemia. Am J Hematol, in press, 2001.

    Google Scholar 

  45. Kralovics R, Sokol L, Broxson E, and Prchal JT. The erythropoietin receptor gene is not linked with polycythemia phenotype in a family with autosomal dominant primary polycythemia. Proc Assoc Am Phys 109: 580–585, 1997.

    PubMed  CAS  Google Scholar 

  46. Kralovics R, Sokol L, and Prchal JT. Absence of polycythemia phenotype in a child in with a unique EPO receptor mutation. J Clin Invest 102: 124–129, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. Krantz SB. Erythropoietin. Blood 11: 419–434, 1991.

    Google Scholar 

  48. Le Blanc K, Berg A, Palmblad J, and Samuelsson J. Stimulus-specific defect in platelet aggregation in polycythemia vera. Eur J Haematol 53: 145–149, 1994.

    Article  PubMed  Google Scholar 

  49. Le Couedic JP, Mitjavila MT, Villeval JL, Feger F, Gobert S, Mayeux P, Casadevall N, and Vainchenker W. Missense mutation of the erythropoietin receptor is a rare event in human erythroid malignancies. Blood 87: 1502–1511, 1996.

    PubMed  Google Scholar 

  50. Lichtman M, Murphy M, and Adamson J. Detection of mutant hemoglobins with altered affinity for oxygen. A simplified technique. Ann Intern Med 84: 517–520, 1976.

    PubMed  CAS  Google Scholar 

  51. Marine JC, McKay C, Wang D, Topham DJ, Parganas E, Nakajima H, Pendeville H, Yasukawa H, Sasaki A, Yoshimura A, and Ihle JN. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98: 617–627, 1999.

    Article  PubMed  CAS  Google Scholar 

  52. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, and Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 273: 247–250, 1995.

    Article  Google Scholar 

  53. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh,CW, Maher ER, and Ratcliffe PJ.: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. McLellan KC, Hooper SB, Bocking AD, Delhanty PJ, Phillips ID, Hill DJ, and Han VK. Prolonged hypoxia induced by the reduction of maternal uterine blood flow alters insulin-like growth factor-binding protein-1 (IGFBP-1) and IGFBP-2 gene expression in the ovine fetus. Endocrinology 131: 1619–1628, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Mirza AM, Ezzat S, and Axelrad A. Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro. Blood 89: 1862–1869, 1997.

    PubMed  CAS  Google Scholar 

  56. Moliterno A, Hankins W, and Spivak J. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med 338: 572–580, 1998.

    Article  PubMed  CAS  Google Scholar 

  57. Mrug M, Stopka T, Julian BA, Prchal JF, and Prchal JT. Angiotensin II stimulates proliferation of normal early erythroid progenitors. J Clin Invest 115: 508–522, 1997.

    Google Scholar 

  58. Nakamura Y and Nakauchi H. A truncated erythropoietin receptor and cell death: A reanalysis. Science 264: 588–589, 1994.

    Article  PubMed  CAS  Google Scholar 

  59. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, and Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2: 423–427, 2000.

    Article  PubMed  CAS  Google Scholar 

  60. Orkin SH and Zon LI. Genetics of erythropoiesis: induced mutations in mice and zebrafish. Annu Rev Genet 31: 33–60, 1997.

    Article  PubMed  CAS  Google Scholar 

  61. Pahl HL. Towards a molecular understanding of polycythemia rubra vera. Eur J Biochem 267:3395–401, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, and Ihle JN. JAK2 is essential for signaling through a variety of cytokine receptors. Cell 93: 385–395, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Perazella M, McPhedran P, Kliger A, Lorber M, Levy E, and Bia MJ. Enalapril treatment of post-transplant erythrocytosis: efficacy independent of circulating erythropoietin levels. Am J Kidney Dis 26: 495–500, 1995.

    Article  PubMed  CAS  Google Scholar 

  64. Poliakova LA. Familial erythrocytosis among inhabitants of the Chuvash ASSR. Probl Gematol Pereliv Krovi 19: 30–33, 1974 (Russian).

    PubMed  CAS  Google Scholar 

  65. Prchal JF and Axelrad AA. Letter: Bone-marrow responses in polycythemia vera. N Eng J Med 290: 1392, 1974 (lett).

    Google Scholar 

  66. Prchal JF and Prchal JT. Molecular basis for polycythemia. In: Current Opinion in Hematology 6. Lippincott Williams & Wilkins, Inc., 1999, p. 100–109.

    Google Scholar 

  67. Prchal JT, Crist WM, Goldwasser E, Perrine G, and Prchal JF. Autosomal dominant polycythemia. Blood 66: 1208–1214, 1985.

    PubMed  CAS  Google Scholar 

  68. Prchal JT and Jenkins M. Congenital and Acquired Abnormality of Hemoglobin. In: 21 st edition of Cecil Textbook of Medicine. Philadelphia: W.B. Saunders Co., 2000.

    Google Scholar 

  69. Prchal JT and Sokol L. Benign erythrocytosis and other familial and congenital polycythemias. Eur J Hematol 57: 263–68, 1996.

    Article  CAS  Google Scholar 

  70. Prchal JT, Prchal JF, Kralovics R, Eskinazi D, and Axelrad AA. Sensitivities of erythroid progenitor cells to erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1) in patients with primary familial and congenital polycythemia (PFCP): Studies in strictly serum-free conditions. Exp Hematol 26 (suppl): 239, 1998 (abstr.).

    Google Scholar 

  71. Ray PE, Aguilera G, Kopp JB, Horikoshi S, and Klotman PE. Angiotensin II receptor-mediated proliferation of cultured human fetal mesangial cells. Kidney Int 40: 764–771, 1991.

    Article  PubMed  CAS  Google Scholar 

  72. Ryan HE, Lo J, and Johnson RS. HIF-1 a is required for solid tumor formation and embryonic vascularization. EMBO J 17: 3005–3015, 1998.

    Article  PubMed  CAS  Google Scholar 

  73. Samuelsson J, Forslid J, Hed J, and Palmblad J. Studies of neutrophil and monocyte oxidative responses in polycythemia vera and related myeloproliferative disorders. Br J Haematol 87: 464–470, 1994.

    Article  PubMed  CAS  Google Scholar 

  74. Sasaki A, Yasukoawa H, Shouda T, Kitamura T, Dikic I, and Yoshimura I. Cis3/SOCS3 suppresses erythropoietin signaling by binding to EPOR and JAK2. J Biol Chem 275: 29338–29347, 2000.

    Article  PubMed  CAS  Google Scholar 

  75. Sato T, Maekawa T, Watanabe S, Tsuji K, and Nakahata T. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. J Clin Invest 106: 263–270, 2000.

    Article  PubMed  CAS  Google Scholar 

  76. Schultz LD, Schweitzer PA, Rajan TV, Taolin Y, Ihle JN, Matthews RJ, Thomas ML, and Beier DR. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73: 1445–1454, 1993.

    Article  Google Scholar 

  77. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35:71–103, 2000.

    Article  PubMed  CAS  Google Scholar 

  78. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Marie P, and Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 111: 32529–37, 1996.

    Google Scholar 

  79. Semenza GL, Roth PH, Fang HM, and Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor. J Biol Chem 269: 23757–23763, 1994.

    PubMed  CAS  Google Scholar 

  80. Semenza GL and Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454, 1992.

    PubMed  CAS  Google Scholar 

  81. Sergeyeva A, Gordeuk VR, Tokarev YN, Prchal JF, Sokol L, and Prchal JT. Congenital polycythemia in Chuvashia. Blood 89: 2148–2154, 1993.

    Google Scholar 

  82. Shih LY and Lee CT. Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay. Blood 83: 744–748, 1994.

    PubMed  CAS  Google Scholar 

  83. Silva M, Richard C, Benito A, Sanz C, Olalla I, and Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. New Engl J Med 338: 564–571, 1998.

    Article  PubMed  CAS  Google Scholar 

  84. Socolovsky M, Dusanter-Fourt I, and Lodish HF. Prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J Biol Chem 272: 14009–14012, 1997.

    Article  PubMed  CAS  Google Scholar 

  85. Sokol L, Prchal JF, and Prchal JT. Primary familial and congenital polycythaemia. Lancet 342: 115–116, 1993 (lett).

    Article  PubMed  CAS  Google Scholar 

  86. Sokol L and Prchal JT: Two microsatellite repeat polymorphisms in the EPO gene. Hum Mol Genet 3: 219–220, 1994.

    Article  PubMed  CAS  Google Scholar 

  87. Stewart S, Zhu B, and Axelrad AA. A ‘serum-free’ medium for the production of erythropoietic bursts by murine bone marrow cells. Exp Hematol 12: 309–318, 1984.

    PubMed  CAS  Google Scholar 

  88. Stopka T, Zivny JH, Stopkova P, Prchal JF, and Prchal JT. Human hematopoietic progenitors express erythropoietin. Blood 91: 3766–3772, 1988.

    Google Scholar 

  89. Streuli M. Protein tyrosine phosphates in signaling. Cur Opin Cell Biol 8: 182–188, 1996.

    Article  CAS  Google Scholar 

  90. Sui X, Krantz SB, and Zhao Z. Identification of increased protein tyrosine phosphatase activity in polycythemia vera erythroid progenitor cells. Blood 90: 651–657, 1997.

    PubMed  CAS  Google Scholar 

  91. Sutter CH, Laughner E, and Semenza GL. Hypoxia-inducible factor 1α protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97: 4748–4753, 2000.

    Article  PubMed  CAS  Google Scholar 

  92. Tanimoto K, Makino Y, Pereira T, and Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-la by the von Hippel-Lindau tumor suppressor protein. EMBOJ 19: 4298–4309, 2000.

    Article  CAS  Google Scholar 

  93. Temerinac S, Klippel S, Strunck E, Roder S, Lubbert M, Lange W, Azemar M, Meinhardt G, Schaefer HE, and Pahl HL. Cloning of PRV-1, a novel member of the uPAR receptor superfamily, which is overexpressed in polycythemia rubra vera. Blood 95: 2569–2576, 2000.

    PubMed  CAS  Google Scholar 

  94. Tokarev IN, Poliakova LA, Alekseev GA, Soboleva SS, and Glasko EN. Hereditary erythrocytosis. Probl Gematol Pereliv Krovi 24: 3–8, 1979 (Russian).

    Google Scholar 

  95. Tufro-Meddie A and Gomer RA. Ontogeny of the renin-angiotensin system. Semin Nephrol 13: 519–530, 1993.

    Google Scholar 

  96. Ushikubi F, Ishibashi T, Narumiya S, and Okuma M. Analysis of the defective signal transduction mechanism through the platelet thromboxane A2 receptor in a patient with polycythemia vera. Thromb Haemost 67: 144–146, 1992.

    PubMed  CAS  Google Scholar 

  97. Wang GL and Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270: 1230–1237, 1995.

    Article  PubMed  CAS  Google Scholar 

  98. Weinberg RS. In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin Hematol 34: 64–69, 1997.

    PubMed  CAS  Google Scholar 

  99. Westwood NB and Pearson TC. Diagnostic application of haemopoietic progenitor culture techniques in polycythaemias and thrombocythaemias. Leuk Lymphoma 22 (suppl. 1): 95–103, 1996.

    Article  PubMed  Google Scholar 

  100. Wickrema A, Chen F, Namin F, Yi T, Ahmad S, Uddin S, Chen YH, Feldman L, Stock W, Hoffman R, and Platanias LC. Defective expression of the SHP-1 phosphatase in polycythemia vera. Exp Hematol 27: 1124–32, 1999.

    Article  PubMed  CAS  Google Scholar 

  101. Wiener CM, Booth G, and Semenza GL. In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 225: 485–488, 1996.

    Article  PubMed  CAS  Google Scholar 

  102. Witthuhn B, Quelle F, Silvennoinen O, Ui T, Tang B, Miura O, and Ihle J. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227–238, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prchal, J.T., Divoky, V. (2001). Lessons to better understanding of hypoxia sensing. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 502. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3401-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3401-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3374-4

  • Online ISBN: 978-1-4757-3401-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics