Skip to main content

Non-Static Network Optimization Problems: A Survey

  • Chapter
Optimization Methods and Applications

Part of the book series: Applied Optimization ((APOP,volume 52))

  • 502 Accesses

Abstract

In this paper we provide a survey of studies on non-static network optimization problems. As contrast to static network optimization which considers networks that are assumed to be time-independent, non-static (or time-varying) network optimization addresses situations where the structure and/or parameters of the network under consideration may change over time. These non-static problems are more adequate and realistic in modelling real-world situations and have thus attracted considerable attention in recent years. We will review the relevant models, analyses, and algorithms reported in this important branch of network optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adel’son-Vel’ski, G.M., Dinic, E.A. and Karzanov, E.V. (1975), Flow Algorithms, Science, Moscow.

    Google Scholar 

  • Ahuja, R.K. and James, B. Orlin, J.B. (1991), Distance-directed augmenting path algorithms for maximum flow and parametric maximum flow problems, Naval Research Logistics, Vol. 38, pp. 413–430.

    Article  MATH  Google Scholar 

  • Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1991), Some recent advances in network flows. SIAM Review, Vol. 33, pp. 175–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993), Network Flows: Theory, Algorithms and Applications, Prentice Hall, Englewood Cliff, New Jersey.

    Google Scholar 

  • Anderson, E.J., Nash, P. and Philpott, A.B. (1982), A class of continuous network flow problems, Mathematics of Operations Research, Vol. 7, No. 4, pp. 501–514.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, E.J. and Philpott, A.B. (1984), Duality and algorithm for a class of continuous transportation problems, Mathematics of Operations Research, Vol. 9, No. 2, pp. 222–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, E.J. and Philpott, A.B. (1994), Optimization of flows in networks over time, Probability, Statistics and Optimization (Edited by F. P. Kelly), John Wiley &amo; Sons Ltd..

    Google Scholar 

  • Aronson, J.E. (1986), The multiperiod assignment problem: a multicommodity network flow model and specialized branch and bound algorithm, European Journal of Operational Research, Vol. 23, pp. 367–381.

    Article  MathSciNet  Google Scholar 

  • Aronson, J.E. (1989), A survey of dynamic network flows, Annals of Operations Research, Vol. 20, No. 1/4, pp. 1–66.

    Google Scholar 

  • Aronson, J.E. and Chen B.D. (1986), A forward network simplex algorithm for solving multiperiod network flow problems, Naval Research Logistics Quarterly, Vol. 33, pp. 445–467.

    Article  MathSciNet  MATH  Google Scholar 

  • Aronson, J.E. and Chen, B.D. (1989), A primary/secondary memory implementation of a forward network simplex algorithm for multiperiod network flow problems, Computers and Operations Research, Vol. 16, No. 4, pp. 379–391.

    Article  MathSciNet  Google Scholar 

  • Aronson, J.E., Morton, T.E. and Thompson, G.L. (1984a), A forward algorithm and planning horizon procedure for the production smoothing problem without inventory, European Journal of Operations Research, Vol. 15, pp. 348–365.

    Article  MATH  Google Scholar 

  • Aronson, J.E., Morton, T.E. and Thompson, G.L. (1985a), A forward simplex method for staircase linear programs, Management Science, Vol. 31, No. 6, pp. 664–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Aronson, J.E. and Thompson, G.L. (1984b), A survey on forward methods in mathematical programming, Large Scale Systems, Vol. 7, pp. 1–16.

    MathSciNet  MATH  Google Scholar 

  • Aronson, J.E. and Thompson, G.L. (1985b), The solution of multiperiod personnel planning problems by the forward simplex method, Large Scale Systems, Vol 9, pp. 129–139.

    MATH  Google Scholar 

  • Baker, E.K. (1983), An exact algorithm for the time-constrained traveling salesman problem, Operations Research, Vol. 31, No. 5, pp. 938–945.

    Article  MATH  Google Scholar 

  • Baker, E.K. and Schaffer, J.R. (1986), Solution improvement heuristics for the vehicle routing and scheduling problem with time window constraints, American Journal of Mathematical and Management Sciences, Vol. 6, No. 3 &amo; 4, pp. 261–300.

    MATH  Google Scholar 

  • Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D. (1990), Linear Programming and Network Flows (2nd ed.), Wiley, New York.

    MATH  Google Scholar 

  • Bean, J.C., Birge, J.R. and Smith, R.L. (1987), Aggregation in dynamic programming, Operations Research, Vol. 35, No. 2, pp. 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Bean, J.C., Lohmann, J.R. and Smith, R.L. (1984), A dynamic infinite horizon replacement economy decision model, The Engineering Economist, Vol. 30, No. 2, pp. 99–120.

    Article  Google Scholar 

  • Bellmore, M. and Ramakrishna, R. Vemuganti, R.R. (1973), On multi-commodity maximal dynamic flows, Operations Research, Vol. 21, No. 1, pp. 10–21.

    MATH  Google Scholar 

  • Blum, W. (1990), A measure-theoretical max-flow-min-cut problem, Math. Z., Vol. 205, pp. 451–470.

    Article  MathSciNet  MATH  Google Scholar 

  • Blum, W. (1993), An approximation for a continuous max-flow problem, Mathematics of Operations Research, Vol. 18, No. 1, pp. 98–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Bodin, L. Golden, B., Assad, A. and Ball, M. (1983), Routing and scheduling of vehicles and crews: the state of the art, Computers and Operations Research, Vol. 10, No. 2, pp63–211.

    Article  MathSciNet  Google Scholar 

  • Brideau, R.J., III, and Cavalier, T.M. (1994), The maximum collection problem with time dependent rewards, presented at the TIMS International Conference, Alaska, June.

    Google Scholar 

  • Cai, X., Kloks, T. and Wong, C.K. (1997), Time-varying shortest path problems with constraints, Networks, Vol. 29, No. 3, pp. 141–149.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, X., Sha, D. and Wong, C.K. (1998), The Time-varying minimum spanning tree problem with waiting times, Advances in Operations Research and Systems Engineering (Edited by Jifa Gu, et al.), Global-link Publishing Co., Hong Kong, pp. 1–8.

    Google Scholar 

  • Cai, X., Sha, D. and Wong, C.K. (2000a), Time-varying minimum cost flow problems, to appear in European Journal of Operational Research.

    Google Scholar 

  • Cai, X., Sha, D. and Wong, C.K. (2000b), Time-varying universal maximum flow problems, to appear in Mathematical and Computer Modelling.

    Google Scholar 

  • Carey, M. (1987), Optimal time-varying flows on congested networks, Operations Research, Vol. 35, No. 1, pp. 58–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Carey, M. and Srinivasan, A. (1988), Congested network flows: time-varying demands and start-time policies, European Journal of Operational Research, Vol. 36, pp. 227–240.

    Article  MathSciNet  MATH  Google Scholar 

  • Carey, M. and Srinivasan, A. (1994), Solving a class of network models for dynamic flow control, European Journal of Operational Research, Vol. 75, pp. 151–170.

    Article  MATH  Google Scholar 

  • Carlton, W.B. and Barnes J.W. (1996), Solving the traveling-salesman problem with time windows using tabu search, HE Transactions, Vol. 28, pp. 617–629.

    Google Scholar 

  • Cattrysse, D.G. and Wassenhove, L.N.V. (1992), A survey of algorithms for the generalized assignment problem, European Journal of Operational Research, Vol. 60, pp. 260–272.

    Article  MATH  Google Scholar 

  • Cattrysse, L.G., Francis, R.L. and Saunders, P.B. (1982), Network models for building evacuation, Management Science, Vol. 28, No. 1, pp. 86–105.

    Article  Google Scholar 

  • Chang, H. and Chung, K. (1992), Fault-tolerant routing in unique-path multistage omega network, Information Processing Letters, Vol. 44, pp. 201–204.

    Article  MATH  Google Scholar 

  • Chardaire, P., Sutter, A. and Costa, M. (1996), Solving the dynamic facility location problem, Networks, Vol. 28, pp. 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Chari, K. and Dutta, A. (1993a), Design of private backbone networks-I: time varying traffic, European Journal of Operational Research, Vol. 67, pp. 428–442.

    Article  MATH  Google Scholar 

  • Chari, K. and Dutta, A. (1993b), Design of private backbone networks-II: time varying grouped traffic, European Journal of Operational Research, Vol. 67, pp. 443–452.

    Article  MATH  Google Scholar 

  • Chen, H. and Yao, D.D. (1993), Dynamic scheduling of a multiclass fluid network, Operations Research, Vol. 41, No. 6, pp. 1104–1115.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheung, R.K. and Powell, W.B. (1996), An algorithm for multistage dynamic networks with random arc capacities, with an application to dynamic fleet management, Operations Research, Vol. 44, No. 6, pp. 951–963.

    Article  MathSciNet  MATH  Google Scholar 

  • Chlebus, B.S. and Diks, K. (1996), Broadcasting in synchronous networks with dynamic faults, Networks, Vol. 27, pp309–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Choi, W., Hamacher, H.W. and Tufekci, S. (1988), Modeling of building evacuation problems by network flows with side constraints, European Journal of Operational Research, Vol. 35, pp. 98–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooks, K.L. and Halsey, E. (1966), The shortest route through a network with time-dependent internodal transit times, Journal of Mathematical Analysis and Applications, Vol. 14, pp. 493–498.

    Article  MathSciNet  Google Scholar 

  • Current, J. and Marsh, M. (1993), Multiobjective transportation network design and routing problems: taxonomy and annotation, European Journal of Operational Research, Vol. 65, pp. 4–19.

    Article  MATH  Google Scholar 

  • Dell, R.F., Batta, R. and Karwan, M.H. (1996), The multiple vehicle TSP with time windows and equity constraints over a multiple day horizon, Transportation Science, Vol. 30, No. 2, pp. 120–133.

    Article  MATH  Google Scholar 

  • Denardo, E.V. and Fox, B.L. (1979), Shortest-route methods: 1. reaching, pruning, and buckets, Operations Research, Vol. 27, No. 1, pp. 161–186.

    Article  MathSciNet  MATH  Google Scholar 

  • Deo, N. and Pang, C. (1984), Shortest-path algorithms: taxononny and annotation, Networks, Vol. 14, pp. 275–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Desrochers, M., Desrosiers, J. and Solomon, M. (1992), A new optimization algorithm for the vehicle routing problem with time windows, Operations Research, Vol. 40, No. 2, pp. 342–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Desrochers, M. and Soumis, F. (1988a), A reoptimization algorithm for the shortest path problem with time windows, European Journal of Operational Research, Vol. 35, pp. 242–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Desrochers, M. and Soumis, F. (1988b), A generalized permanent labelling algorithm for the shortest path problem with time windows, INFOR, Vol. 26, No. 3, pp. 191–212.

    MATH  Google Scholar 

  • Desrosiers, J., Dumas, Y. and Soumis, F. (1986), A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows, American Journal of Mathematical and Management Sciences, Vol. 6, No. 3 &amo; 4, pp. 301–325.

    MATH  Google Scholar 

  • Dreyfus, S.E. (1969), An appraisal of some shortest-path algorithms, Operations Research, Vol. 17, pp. 395–412.

    Article  MATH  Google Scholar 

  • Dumas, Y., Desrosiers, J., Gelinas, E. and Solomon, M.M. (1995), An optimal algorithm for the traveling salesman problem with time windows, Operations Research, Vol. 43, No. 2, pp. 367–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Eiselt, H.A., Gendreau, M. and Laporte, G. (1995a), Arc routing problems, part I: the Chinese postman problem, Operations Research, Vol. 43, No. 2, pp. 231–242.

    Article  MathSciNet  MATH  Google Scholar 

  • Eiselt, H.A., Gendreau, M. and Laporte, G. (1995b), Arc routing problems, part I: the rural postman problem, Operations Research, Vol. 43, No. 3, pp. 399–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Erkut, E. and Zhang, J. (1996), The maximum collection problem with time-dependent rewards, Naval Research Logistics, Vol. 43, pp. 749–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Federgruen, A. and Groenevelt, H. (1986), Preemptive scheduling of uniform machines by ordinary network flow techniques, Management Science, Vol. 32, No. 3, pp. 341–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, M.L. (1994), Optimal solution of vehicle routing problems using minimum k-trees, Operations Research, Vol. 42, No. 4, pp. 626–642.

    Article  MathSciNet  MATH  Google Scholar 

  • Fisher, M.L., Jornsten, K.O. and Madsen, O.B.G. (1997), Vehicle routing with time windows: two optimization algorithms, Operations Research, Vol. 45, No. 3, pp. 488–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, L.R., Jr. and Fulkerson, D.R. (1956), Maximal flow through a network, Can. Journal Mathematics, Vol. 8, pp. 399–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Ford, L.R., Jr. and Fulkerson, D.R. (1958), Constructing maximal dynamic flows from static flows, Operations Research, Vol. 6, pp. 419–433.

    Article  MathSciNet  Google Scholar 

  • Ford, L.R., Jr. and Fulkerson, D.R. (1962), Flows in Networks, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  • Franca, P.M., Gendreau, M., Laporte, G. and Muller, F.M. (1995), The m-traveling salesman problem with minimax objective, Transportation Science, Vol. 29, No. 3, pp. 267–275.

    Article  MATH  Google Scholar 

  • Fukuda, K. and Matsul, T. (1992), Finding all minimum-cost perfect matchings in bipartite graphs, Networks, Vol. 22, pp. 461–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Gaimon, C. (1986), Optimal inventory, backlogging and machine loading in a serial multi-stage, multi-period production environment, Int. J. Prod. Res., Vol. 24, No. 3, pp. 647–662.

    Article  MATH  Google Scholar 

  • Gale, D. (1957), A theorem on flows in networks, Pacific Journal of Mathematics, Vol. 7, pp. 1073–1086.

    Article  MathSciNet  MATH  Google Scholar 

  • Gale, D. (1959), Transient flows in network, Michigan Mathematical Journal, Vol. 6, pp. 59–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Glover, F. (1990), Tabu search: a tutorial, Interfaces, Vol. 20, pp. 74–94.

    Article  Google Scholar 

  • Glover, F. and Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Norwell, MA.

    Book  MATH  Google Scholar 

  • Goczyla, K. and Cielatkowski, J. (1995), Optimal routing in a transportation network, European Journal of Operations Research, Vol. 87, pp. 214–222.

    Article  MATH  Google Scholar 

  • Goldberg, A.V. (1998), Recent developments in maximum flow algorithms, proceedings of Sixth Scandinavian Workshop on Algorithm.

    Google Scholar 

  • Gondran, M. and Minoux, M. (1984), Graphs and Algorithms, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Grossmann, W., Guariso, G., Hitz, M. and Werthner, H. (1995), A min cost flow solution for dynamic assignment problems in Networks with storage devices, Management Science, Vol. 41, No. 1, pp. 83–93.

    Article  MATH  Google Scholar 

  • Gupta, S.K. (1985), Linear Programming and Network Models. Affiliated East-West Press, New Delhi, India.

    MATH  Google Scholar 

  • Halpern, I. (1979), Generalized dynamic flows, Networks, Vol. 9, pp. 133–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamacher, H.W. and Tufekci, S. (1987), On the use of lexicographic min cost flows in evacuation modeling, Naval Research Logistics, Vol. 34, pp. 487–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Imase, M. and Waxman, B.M. (1991), Dynamic steiner tree problem, SIAM J. Discrete Mathematics, Vol. 4, No. 3, pp. 369–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Ioachim, I., Gelinas, S., Francois, and Desrosiers, J. (1998), A dynamic programming algorithm for the shortest path problem with time windows and linear node costs, Networks, Vol. 31, pp. 193–204.

    MathSciNet  MATH  Google Scholar 

  • Iri, M. (1969), Network Flow, Transportation and Scheduling, Academic Press, New York.

    MATH  Google Scholar 

  • Jacobs, K. and Seiffert, G. (1983), A measure-theoretical max-flow problem, Part I, Bulletin Inst. Mathe. Acad. Sinica, Vol 11, No. 2, pp. 261–280.

    MathSciNet  MATH  Google Scholar 

  • Jaillet, P. (1992), Shortest path problems with node failures, Networks, Vol. 22, pp. 589–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Janson, B.N. (1991), Dynamic traffic assignment for urban road networks, Transportation Research Part B, Vol. 25, No. 2/3, pp. 143–161.

    Google Scholar 

  • Jarvis, J.J. and Ratliff, H.D. (1982), Some equivalent objectives for dynamic network flow problems, Management Science, Vol. 28, No. 1, pp. 106–109.

    Article  MathSciNet  MATH  Google Scholar 

  • Jensen, P.A. and Barnes, W. (1980), Network Flow Programming, Wiley, New York.

    MATH  Google Scholar 

  • Kogan, K., Shtub, A. and Levit, V.E. (1997), DGAP-the dynamic generalized assignment problem, Annals of Operations Research, Vol. 69, pp. 227–239.

    Article  MATH  Google Scholar 

  • Lee, D.T. and Papadopoulou, E. (1993), The all-pairs quickest path problem, Information Processing Letters, Vol. 45, pp. 261–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, H. and Pulat, P.S. (1991), Bicriteria network flow problems: continuous case, European Journal of Operational Research, Vol. 51, pp. 119–126.

    Article  MATH  Google Scholar 

  • Levner, E.V. and Nemirovsky, A.S. (1994), A network flow algorithm for just-in-time project scheduling, European Journal of Operational Research, Vol. 79, pp. 167–175.

    Article  MATH  Google Scholar 

  • Lawler, E.L. (1976), Combinational Optimization: Networks and Matroids, Holt Rinehart and Winston, New York.

    Google Scholar 

  • Mcquillan, J.M., Richer, I. and Rosen, E.C. (1980), The new routing algorithm for the ARPANET, IEEE Transactions on Communications, Vol. 28, No. 5, pp. 711–719.

    Article  Google Scholar 

  • Merchant, D.K. and Nemhauser, G.L. (1978a), A model and an algorithm for the dynamic traffic assignment problems, Transportation Science, Vol. 12, No. 3, pp. 183–199.

    Article  Google Scholar 

  • Merchant, D.K. and Nemhauser, G.L. (1978b), Optimality conditions for a dynamic traffic assignment model, Transportation Science, Vol. 12, No. 3, pp. 200–207.

    Article  Google Scholar 

  • Mingozzi, A., Bianco, L. and Ricciardelli, S. (1997), Dynamic programming strategies for the traveling salesman problem with time window and precedence constraints, Operations Research, Vol. 45, No. 3, pp. 365–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Minieka, E. (1973), Maximal, lexicographic, and dynamic network flows, Operations Research, Vol. 12, No. 2, pp. 517–527.

    Article  MathSciNet  Google Scholar 

  • Minieka, E. (1978), Optimization Algorithms for Networks and Graphs, Marcel Dekker, New York.

    MATH  Google Scholar 

  • Murthy, I. (1993), Solving the multiperiod assignment problem with start-up cost using dual ascent, Naval Research Logistics, Vol. 40, pp. 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  • Nachtigall, K. (1995), Time depending shortest-path problems with applications to railway networks, European Journal of Operational Research, Vol. 83, pp. 154–166.

    Article  MATH  Google Scholar 

  • Nanry, W.P. and Barnes, J.W. (2000), Solving the pickup and delivery problem with time windows using reactive tabu search, Transportation Research Part B, Vol. 34, pp. 107–121.

    Article  Google Scholar 

  • Nozawa, R. (1994), Examples of max-flow and min-cut problems with duality gaps in continuous networks, Mathematical Programming, Vol. 63, pp. 213–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Orda, A. and Rom, R. (1990), Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length, Journal of Association for Computing Machinery, Vol. 37, No. 3, pp. 607–625.

    Article  MathSciNet  MATH  Google Scholar 

  • Orda, A. and Rom, R. (1991), Minimum weight paths in time-dependent networks, Networks, Vol. 21, pp. 295–319.

    Article  MathSciNet  MATH  Google Scholar 

  • Orda, A. and Rom, R. (1995), On continuous network flows, Operations Research Letters, Vol. 17, pp. 27–36.

    Article  MathSciNet  MATH  Google Scholar 

  • Orlin, J.B. (1983), Maximum-throughput dynamic network flows, Mathematical programming. Vol. 27, No. 2, pp. 214–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Orlin, J.B. (1984), Minimum convex cost dynamic network flows, Mathematics of Operations Research, Vol. 9, No. 2, pp. 190–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitrion, C. and Steiglitz, K. (1982), Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Endlewood Cliff, NJ.

    Google Scholar 

  • Papageorgiou, M. (1990), Dynamic modeling, assignment, and route guidance in traffic networks, Transportation Research Part B, Vol. 24, No. 6, pp. 471–495.

    Article  Google Scholar 

  • Philpott, A.B. (1990), Continuous-time flows in networks, Mathematics of Operations Research, Vol. 15, No. 4, pp. 640–661.

    Article  MathSciNet  MATH  Google Scholar 

  • Philportt, A.B. and Mees, A.I. (1992), Continuous-time shortest path problems with stopping and starting costs, Appl. Mathe. Lett., Vol. 5, No. 5, pp. 63–66.

    Article  Google Scholar 

  • Picard, J. and Queyranne M. (1978), The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling, Operations Research, Vol. 26, No. 1, pp. 86–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Polak, G.G. (1992), On a parametric shortest path problem from primal-dual multicommodity network optimization, Network, Vol. 22, pp. 283–295.

    Article  MathSciNet  MATH  Google Scholar 

  • Posner, M.E. and Szwarc, W. (1983), A transportation type aggregate production model with backordering, Management Science, Vol. 29, No. 2, pp. 188–199.

    Article  MATH  Google Scholar 

  • Psaraftis, H.N., Solomon, M.M., Magnanti T.L., Kim T. (1990), Routing and scheduling on a shoreline with release times, Management Science, Vol. 36, No. 2, pp. 212–223.

    Article  MATH  Google Scholar 

  • Psaraftis, H.N. and Tsitsiklis, J.N. (1993), Dynamic shortest paths in acyclic networks with markovian arc costs, Operations Research, Vol. 41, No. 1, pp. 91–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Rego, C. and Roucairol, C. (1995), Using tabu search for solving a dynamic multi-terminal truck dispatching problem, European Journal of Operational Research, Vol. 83, pp. 411–429.

    Article  MATH  Google Scholar 

  • Salomon, M., Solomom, M.M., Wassenhove, L.N.V., Dumas, Y. and Dauzere-Peres, S. (1997), Solving the discrete lotszing and scheduling problem with sequence dependent set-up costs and set-up times using the travelling salesman problem with time windows, European Journal of Operational Research, Vol. 100, pp. 494–513.

    Article  MATH  Google Scholar 

  • Sancho, N.G.F. (1992), A dynamic programming solution of a shortest path problem with time constraints on movement and parking, J. Math. Anal. Appl., Vol. 166, pp. 192–198.

    Article  MathSciNet  MATH  Google Scholar 

  • Sancho, N.G.F. (1994), Shortest path problem with time windows on nodes and arcs, Journal of Mathematical Analysis and Applications, Vol. 186, pp. 643–648.

    Article  MathSciNet  MATH  Google Scholar 

  • Saniee, I. (1995), An efficient algorithm for the multiperiod capacity expansion of one location in telecommunications, Operations Research, Vol. 43, No. 1, pp. 187–190.

    Article  MATH  Google Scholar 

  • Sexton, T.R. and Choi Y. (1986), Pickup and delivery of partial loads with “soft” time windows, American Journal of Mathematical and Management Sciences, Vol. 6, No. 3 &amo; 4, pp. 369–398.

    MATH  Google Scholar 

  • Sha, D., Cai, X. and Wong, C.K. (2000), The maximum flow in a time-varying network, Optimization, Lecture Notes in Economics and Mathematical Systems, 481, Edited by Nguyen, V. H., Strodiot, J. J. and Tossings, P., Springer-Verlag Berlin Heidelberg, pp. 437–456.

    Google Scholar 

  • Sherali, H.D., Ozbay, K. and Subramanian, S. (1998), The time-dependent shortest pair of disjoint paths problem: complexity, models, and algorithms, Networks, Vol. 31, pp. 259–272.

    Article  MathSciNet  MATH  Google Scholar 

  • Solomom, M.M. (1986), The minimum spanning tree problem with time window constraints, America Journal of Mathematical and Management Sciences, Vol. 6, No. 3 &amo; 4, pp. 399–421.

    Google Scholar 

  • Solomon, M.M. (1987), Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research, Vol. 35, No. 2, pp. 254–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Stanley, J.D. (1987), A forward convex-simplex method, European Journal of Operational Research, Vol.29, pp. 328–335.

    Article  MathSciNet  MATH  Google Scholar 

  • Steinberg, E. and Napier, H.A. (1980), Optimal multi-level lot sizing for requirements planning systems, Management Science, Vol. 26, No. 12, pp. 1258–1271.

    Article  MATH  Google Scholar 

  • Thangiah, S.R., Potvin, J. and Sun, T. (1996), Heuristic approaches to vehicle routing with backhauls and time windows, Computers Operations Research, Vol. 23, No. 11, pp. 1043–1057.

    Article  MATH  Google Scholar 

  • Van Der Bruggen, L.J.J., Lenstra, J.K. and Schuur, P.C. (1993), Variable-depth search for the single-vehicle pickup and delivery problem with time windows, Transportation Science, Vol. 27, No. 3, pp. 298–311.

    Article  MATH  Google Scholar 

  • Vemuganti, R.R., Oblak, M. and Aggarrwal, A. (1989), Network models for fleet management, Decision Science, Vol. 20, pp. 182–197.

    Article  Google Scholar 

  • Vythoulkas, P.C. (1990), A dynamic stochastic assignment model for the analysis of general networks, Transpn. Res. B, Vol. 24B, No. 6, pp. 453–469.

    MathSciNet  Google Scholar 

  • Wie, B., Tobin, R.L., Friesz, T.L. and Bernstein, D. (1995), A discrete time, nested cost operator approach to the dynamic network user equilibrium problem, Transportation Science, Vol. 29, No. 1, pp. 79–92.

    Article  MATH  Google Scholar 

  • Wiel, R.J.V. and Sahinidis, N.V. (1995), Heuristic bounds and test problem generation for the time-dependent traveling salesman problem, Transportation Science, Vol. 29, No. 2, pp. 167–183.

    Article  MATH  Google Scholar 

  • Wiel, R.J.V. and Sahinidis, N.V. (1996), An exact solution approach for the time-dependent traveling-salesman problem, Naval Research Logistics, Vol. 43, pp. 797–820.

    Article  MathSciNet  MATH  Google Scholar 

  • Wilkinson, W.L. (1971), An algorithm for universal maximal dynamic flows in a network, Operations Research, Vol. 19, No. 7, pp. 1602–1612.

    Article  MathSciNet  MATH  Google Scholar 

  • Xue, G., Sun, S. and Rosen, J.B. (1998), Fast data transmission and maximal dynamic flow, Information Processing Letters, Vol. 66, pp. 127–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Zahorik, A., Thomas, L.J. and Trigeiro, W.W. (1984), Network programming models for production scheduling in multi-stage, multi-item capacitated systems, Management Science, Vol. 30, No. 3, pp. 308–325.

    Article  MATH  Google Scholar 

  • Zawack, D.J. and Thompson, G.L. (1987), A dynamic space-time network flow model for city traffic congestion, Transportation Science, Vol. 21, No. 3, pp. 153–162.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cai, X., Sha, D., Wong, C.K. (2001). Non-Static Network Optimization Problems: A Survey. In: Yang, X., Teo, K.L., Caccetta, L. (eds) Optimization Methods and Applications. Applied Optimization, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3333-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3333-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4850-2

  • Online ISBN: 978-1-4757-3333-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics