Skip to main content

Critical Dimension Patterning Using SPL

  • Chapter
Scanning Probe Lithography

Part of the book series: Microsystems ((MICT,volume 7))

Abstract

Transistor gate patterning is the primary application of a high-resolution lithographic system in the semiconductor industry. The gate itself is typically a long, narrow line of polysilicon whose width (known as the transistor gate “length”) determines the device switching speed. The uniformity of the gate is critical for device electrical performance and yield. Gate patterning is performed after significant device processing. Therefore the feature must be accurately aligned to the previously patterned regions. It must also be written over the sample topography created by the prior fabrication steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. F. Lee, R. H. Yan, D. Y. Jeon, G. M. Chin, Y. O Kim, D. M. Tennant, B. Razavi, H. D. Lin, Y. G. Wey, E. H. Westerwick, M. D. Morris, R. W. Johnson, T. M. Liu, M. Tarsia, M. Cerullo, R. G. Swartz, and A. Ourmazd, “Room temperature 0.1 µm CMOS technology with 11.8 ps gate delay,” Proc. IEDM, 131–134 (1993).

    Google Scholar 

  2. Y. Taur, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C. L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Polcari, “High performance 0.1 µm CMOS devices with 1.5 V power supply,” Proc. IEDM, 127–130 (1993).

    Google Scholar 

  3. T. Hori, “A 0.1 µm CMOS technology with tilt-implanted punchthrough stopper,” Proc. IEDM, 75–78 (1994).

    Google Scholar 

  4. B. Davari, “CMOS technology scaling, 0.1 µm and beyond,” Proc. IEDM, 555558 (1996).

    Google Scholar 

  5. S. C. Minne, H. T. Soh, P. Flueckiger, and C. F. Quate, “Fabrication of 0.1 µm metal oxide semiconductor field-effect transistors with the atomic force microscope,” Appl. Phys. Lett. 66, 703–705 (1995).

    Article  Google Scholar 

  6. E. Kooi, The Invention of LOCOS (New York: The Institute of Electrical and Electronics Engineers, Inc., 1991 ).

    Google Scholar 

  7. S. Wolf, Silicon Processing for the VLSI Era (Sunset Beach, California: Lattice Press, 1990 ).

    Google Scholar 

  8. International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data also reflects 1998 update to the roadmap.

    Google Scholar 

  9. W. H. Arnold, B. Singh, and K. Phan, “Line width metrology requirement for sub-micron lithography,” Solid State Technol. 32, 139–145 (1989).

    Google Scholar 

  10. L. Bauch, U. Jagdhold, and M. Bottcher, “Electron beam lithography over topography,” Microelectron. Eng. 30, 53–56 (1996).

    Article  Google Scholar 

  11. T. Waas, E. Eisenmann, O. Vollinger, and H. Hartmann, “Proximity correction for high CD accuracy and process tolerance,” Microelectron. Eng. 27, 179–182 (1995).

    Article  Google Scholar 

  12. J. M. Pimbley and J. D. Meindl, “MOSFET scaling limits determined by subthreshold conduction,” Trans. Elec. Dev. 36, 1711–1721 (1989).

    Article  Google Scholar 

  13. R. R. Troutman, “VLSI limitations from drain-induced barrier lowering,” IEEE J. of Solid-State Circuits SC-14, 383–391 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soh, H.T., Guarini, K.W., Quate, C.F. (2001). Critical Dimension Patterning Using SPL. In: Scanning Probe Lithography. Microsystems, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3331-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3331-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4894-6

  • Online ISBN: 978-1-4757-3331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics