Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 52))

  • 472 Accesses

Abstract

In recent years, starting with works of Bolotin [Bol], Coti-Zelati, Ekeland and Séré [CZES], Coti-Zelati & Rabinowitz [CZR1], [CZR2], Rabinowitz [Ra4], variational methods have been applied to study the existence of homoclinic and heteroclinic solutions of second-order equations and Hamiltonian systems. The search for homoclinic and heteroclinic solutions is a classical problem, originated from the work of Poincaré and has been developed from several points of view. Existence of homoclinic solutions can be obtained by analyzing the intersection properties of the stable and unstable manifolds of the fixed points. There is a standard method to find infinitely nearby homoclinics provided that the stable and unstable manifolds of a fixed point intersect transversally. For this approach we refer the reader to Moser [Mo], Guckenheimer & Holmes [GH], Wiggins [Wig].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ambrosetti A, Bertotti M. Homoclinics for second-order conservative systems. Scuola Norm. Sup. Preprint N 107, 1991.

    Google Scholar 

  2. Ambrosetti A, Struwe M. Existence of steady vortex rings of an ideal fluid. Scuola Norm. Sup. Preprint N 38, 1989.

    Google Scholar 

  3. Amick CJ, Toland JF. Homoclinic orbits in the dynamic phase space analogy of an elastic strut. Eur. J. Appl. Math., 1991;3:97–114.

    Article  MathSciNet  Google Scholar 

  4. Arioli G, Szulkin A. Homoclinic solutions for a class of systems of second-order equations. Reports, Dept. Math., Univ. Stockholm. 5, 1995.

    Google Scholar 

  5. Bartsch T, Willem M. Infinitely many radial solutions of semilinear elliptic problem on Rn. Arch. Rational Mech. Anal. 1993;124:261–276.

    Article  MathSciNet  MATH  Google Scholar 

  6. Berezin, Felix and Schubin, Michail. The Schrödinger Equation. Moscow: Univ. Moscow, 1983. (In Russian)

    MATH  Google Scholar 

  7. Biroli M, Mosco U. Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces. Rend. Mat. Acc. Lincei. 1995;VI(1):37–44.

    MathSciNet  Google Scholar 

  8. Biroli M, Mosco U. Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C.R. Acád. Sc. Paris, 1991;313:593–597.

    MathSciNet  MATH  Google Scholar 

  9. Biroli M, Mosco U. Sobolev inequalities on homogeneous spaces. Proceedings “Potential theory and degenerate P.D. Operators”. Parma Feb. 1994, Kluwer, 1995.

    Google Scholar 

  10. Biroli M, Mosco U. A Saint-Venant principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura e Appl., 1995;169:125–181.

    Article  MathSciNet  MATH  Google Scholar 

  11. Biroli M, Tchou T. Asymptotic behavior of relaxed Dirichlet problems involving a Dirichlet Poincaré form. ZAA, 1997.

    Google Scholar 

  12. Biroli M, Mosco U, Tchou N. Homogenization by the Heisenberg group. Publications du Laboratoire D’Analyse Numerique. R 94032, Univ. Pierre et Marie Curie.

    Google Scholar 

  13. Biroli M, Tersian S. On the existence of nontrivial solutions to semilinear equations relative to a Dirichlet form. Rendiconti Istituto Lombardo, to appear.

    Google Scholar 

  14. Buffoni B. Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational method. Nonlin. Anal., 1996; 26, 3: 443–462.

    Article  MathSciNet  MATH  Google Scholar 

  15. Burton G. Semilinear Elliptic Equations on Unbounded Domains. Math. Z. 1985;190:519–525.

    Article  MathSciNet  MATH  Google Scholar 

  16. Coddington EA, Levinson N. Theory of Ordinary Differetial Equations. N.Y.: McGraw-Hill, 1955.

    Google Scholar 

  17. Coti-Zelati V., Ekeland I., Séré E. A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 1990; 288: 133–160.

    Article  MathSciNet  MATH  Google Scholar 

  18. Coti-Zelati V, Rabinowitz P. Homoclinic type solutions for a semilinear elliptic PDE on Rn. Ref. SISSA 58, 91,M, 1991.

    Google Scholar 

  19. Coti-Zelati V, Rabinowitz P. Homoclinic orbits for secondorder Hamiltonian systems possessing superquadratic potentials. J.A.M.S., 1991, 4,4: 693–727.

    MathSciNet  MATH  Google Scholar 

  20. Devaney R. Homoclinic Orbits in Hamiltonian Systems. J. Diff. Eq., 1976; 21:431–438.

    Article  MathSciNet  Google Scholar 

  21. Ding WY, Ni WM. On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Rational Mech. Anal. 1986;91:283–308.

    Article  MathSciNet  MATH  Google Scholar 

  22. Esteban M. Nonlinear elliptic problems in strip-like domains: Symmetry of positive vortex rings. Nonlinear Anal., 1983;7,4:365–379.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fabes E, Kenig C, Serapioni R. The local regularity of solutions of degenerate elliptic equations Comm. Part. Diff. Eq., 1982;7:77–116.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fukushima. Dirichlet Forms and Markov Processes. Amsterdam: North Holland, 1980.

    MATH  Google Scholar 

  25. Gidas B, Ni WM and Nirenberg L. Symmetry and related properties via the maximum principle, Commun. Math. Phys., 1979;68:209–243.

    Article  MathSciNet  MATH  Google Scholar 

  26. Grossinho MR, Minhos F, Tersian S. Positive Homoclinic Solutions for a Class of Second Order Differential Equations. J. Math. Anal. Appl., 1999;240:163–173.

    Article  MathSciNet  MATH  Google Scholar 

  27. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. N.Y.: Springer-Verlag, 1983.

    MATH  Google Scholar 

  28. Jerison J. The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J., 1986;53:503–523.

    Article  MathSciNet  MATH  Google Scholar 

  29. Korman P, Lazer A. Homoclinic orbits for a class of symmetric hamiltonian systems, Electr. Journal Diff. Eq. 1994;1:1–10.

    MathSciNet  Google Scholar 

  30. Korman P, Ouyang T. Exact multiplicity results for two classes of boundary value problems. Differential and Integral Equations. 1993;6,6:1507–1517.

    MathSciNet  MATH  Google Scholar 

  31. Lions PL. Symmétrie et compacité dans les espaces de Sobolev. J. Funct. Anal., 1982;49:315–334.

    Article  MathSciNet  MATH  Google Scholar 

  32. Melnikov VK. On the stability of the centre for time periodic perturbations. Trans.Moscow.Math.Soc., 1963;12:1–57.

    Google Scholar 

  33. Mosco U. Variational metrics on selfsimilar fractals. C. R. Acád. Sci. Paris, 1995;321:715–720.

    MathSciNet  MATH  Google Scholar 

  34. Moser J. Stable and Random Motions in Dynamical Systems. Princeton University Press: Princeton, 1973.

    MATH  Google Scholar 

  35. Nitecki, Zbignev. Differentiable Dynamics. M.I.T. Press: Cambridge, 1971.

    Google Scholar 

  36. Omana O, Willem M. Homoclinic orbits for a class of Hamiltonian systems. Diff. Int. Eq, 1992;5:5.

    MathSciNet  Google Scholar 

  37. Peletier LA, Troy WC, Van der Vorst RCAM. Stationary solutions of a forth-order nonlinear diffusion equation. Differential Equations, 1995; 31,2:301–314.

    MathSciNet  MATH  Google Scholar 

  38. Rabinowitz P. A note on a semilinear elliptic equations on Rn. Scuola Norm. Sup. Pisa, 1991.

    Google Scholar 

  39. Rabinowitz P. Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinbourgh. 1990;114A:33–38.

    Article  MathSciNet  MATH  Google Scholar 

  40. Rabinowitz P, Tanaka, K. Some results on connection orbits for a class of Hamiltonian systems. Math. Z. 1991;206:473–499.

    Article  MathSciNet  MATH  Google Scholar 

  41. Reed, Michael & Simon, Barry. Methods of Modern Mathematical Physics, v. IV. Moskow: Mir, 1983. (In Russian).

    Google Scholar 

  42. Sanchez L. Boundary Value Problems for Some Fourth Order Ordinary Differential Equations. Appl. Anal., 1990;38:161–177.

    Article  MathSciNet  MATH  Google Scholar 

  43. Strauss W. Existence of solitary waves in higher dimensions. Comm. Math. Ph., 1977;55:149–162.

    Article  Google Scholar 

  44. Tersian S. On nontrivial solutions of semilinear Schrödinger equations on Rn. Rendiconti Istituto Lombardo (Rend.Sc.) 1995;A 129:97–109.

    MathSciNet  Google Scholar 

  45. Tersian S. On a resonance problem for semilinear Schrödinger equations on R n. Rendiconti Istituto Lombardo (Rend.Sc.) 1995;A 129:135–145.

    MathSciNet  Google Scholar 

  46. Tersian S. Nontrivial solutions to the semilinear Kohn—Laplace equation on R 3. Electronic J. Diff.Eq. 1999:v.1999,12;1–12.

    MathSciNet  Google Scholar 

  47. Tersian S. On the solvablility of semilinear Schrödinger equations in strip-like domains. C. R. Acad. Sci. Bulg., 1998;51,6.

    MathSciNet  Google Scholar 

  48. Wiggins S. Global Bifurcations and Chaos. N.Y.: Springer-Verlag, 1988.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

do Rosário Grossinho, M., Tersian, S.A. (2001). Homoclinic Solutions of Differential Equations. In: An Introduction to Minimax Theorems and Their Applications to Differential Equations. Nonconvex Optimization and Its Applications, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3308-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3308-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4849-6

  • Online ISBN: 978-1-4757-3308-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics