Skip to main content

Dynamics of Solvent and Spectral Relaxation

  • Chapter

Abstract

In the preceding chapter we described the effects of solvents on emission spectra and considered how the solvent-dependent data could be interpreted in terms of the local environment. We assumed that the solvent was in equilibrium around the excited-state dipole prior to emission. Equilibrium around the excited-state dipole is reached in fluid solution because the solvent relaxation times are typically less than 100 ps whereas the decay times are usually 1 ns or longer. However, equilibrium around the excited-state dipole is not reached in more viscous solvents and may not be reached for probes bound to proteins or membranes. In these cases emission occurs during solvent relaxation, and the emission spectrum represents an average of the partially relaxed emission. Under these conditions, the emission spectra display time-dependent changes. These effects are not observed in the steady-state emission spectra but can be seen in the time-resolved data or the intensity decays measured at various emission wavelengths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhshiev, N. G., Mazurenko, Yu. T., and Piterskaya, I. V., 1966, Luminescence decay in different portions of the luminescence spectrum of molecules in viscous solution, Opt. Spectrosc. 21: 307–309.

    Google Scholar 

  2. Mazurenko, Yu. T., and Bakshiev, N. K., 1970, Effect of orientation dipole relaxation on spectral, time, and polarization characteristics of the luminescence of solutions, Opt. Spectrosc. 28: 490–494.

    Google Scholar 

  3. Bakhshiev, N. K., Mazurenko, Yu. T., and Piterskaya, I. V., 1969, Relaxation effects in the luminescence characteristics of viscous solutions, Akad. Nauk SSSR, Bull. Phys. Sci. 32: 1262–1266.

    Google Scholar 

  4. Ware, W. R., Lee, S. K., Brant, G J., and Chow, P. P., 1970, Nanosecond time-resolved emission spectroscopy: Spectral shifts due to solvent-excited solute relaxation, J. Chem. Phys. 54: 4729–4737.

    Google Scholar 

  5. Ware, W. R., Chow, E, and Lee, S. K.,1968, Time-resolved nanosecond emission spectroscopy: Spectral shifts due to solvent-solute relaxation, Chem. Phys. Lett. 2: 356–358.

    Google Scholar 

  6. Chakrabarti, S. K., and Ware, W. R., 1971, Nanosecond time-resolved emission spectroscopy of 1-anilino-8-naphthalene sulfonate, J. Chem. Phys. 55: 5494–5498.

    Article  CAS  Google Scholar 

  7. Easter, J. H., DeToma, R. P., and Brand, L., 1976, Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to L-a-egg lecithin vesicles, Biophys. J. 16: 571–583.

    Article  CAS  Google Scholar 

  8. O’Connor, D. V., and Phillips, D., 1984, Time-Correlated Single Photon Counting, Academic Press, New York, pp. 211–251.

    Book  Google Scholar 

  9. Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, Methods. Enzymol. 61: 378–425.

    Article  CAS  Google Scholar 

  10. Bades, M. G., De Toma, R. P., and Brand, L., 1978, Nanosecond relaxation processes in liposomes, Biophys. J. 24: 197–212.

    Article  Google Scholar 

  11. Brand, L., and Gohlke, J. R., 1971, Nanosecond time-resolved fluorescence spectra of a protein-dye complex, J. Biol. Chem. 246: 2317–2324.

    CAS  Google Scholar 

  12. Gafni, A., De Toma, R. P., Manrow, R. E., and Brand, L., 1977, Nanosecond decay studies of a fluorescence probe bound to apomyoglobin, Biophys. J. 17: 155–168.

    Article  CAS  Google Scholar 

  13. Lakowicz, J. R., and Cherek, H., 1981, Proof of nanosecond time-scale relaxation in apomyoglobin by phase fluorometry, Biochem. Biophys. Res. Commun. 99: 1173–1178.

    Article  CAS  Google Scholar 

  14. Lakowicz, J. R., Gratton, E., Cherek, H., Maliwal, B. P., and Laczko, G., 1984, Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore-protein complex using frequency-domain phase-modulation fluorometry, J. Biol. Chem. 259: 10967–10972.

    CAS  Google Scholar 

  15. Pierce, D. W., and Boxer, S. G., 1992, Dielectric relaxation in a protein matrix, J. Phys. Chem. 96: 5560–5566.

    Article  CAS  Google Scholar 

  16. Wang, R., Sun, S., Bekos, E. J., and Bright, F. V., 1995, Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin, Anal. Chem. 67: 149–159.

    Article  CAS  Google Scholar 

  17. Demchenko, A. P., Apell, H. -J., Stürmer, W., and Feddersen, B., 1993, Fluorescence spectroscopic studies on equilibrium dipole-relaxational dynamics of Na,K-ATPase, Biophys. Chem. 48: 135–147.

    Article  CAS  Google Scholar 

  18. Easter, J. H., and Brand, L., 1973, Nanosecond time-resolved emission spectroscopy of a fluorescence probe bound to L-a-egg lecithin vesicles, Biochem. Biophys. Res. Commun. 52: 1086–1092.

    Article  CAS  Google Scholar 

  19. Easter, J. H., DeToma, R. P., and Brand, L., 1978, Fluorescence measurements of environmental relaxation at the lipid-water interface region of bilayer membranes, Biochim. Biophys. Acta 508: 27–38.

    Article  CAS  Google Scholar 

  20. DeToma, R. P., Easter, J. H., and Brand, L., 1976, Dynamic interactions of fluorescence probes with the solvent environment, J. Am. Chem. Soc. 98: 5001–5007.

    Article  CAS  Google Scholar 

  21. Lakowicz, J. R., Cherek, H., Laczko, G., and Gratton, E., 1984, Time-resolved fluorescence emission spectra of labeled phospholipid vesicles, as observed using multifrequency phase-modulation fluorometry, Biochim. Biophys. Acta 777: 183–193.

    Article  CAS  Google Scholar 

  22. Parasassi, T., Conti, F., and Gratton, E., 1986, Time-resolved fluorescence emission spectra of laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry, Cell. Mol. Biol. 32: 103–108.

    CAS  Google Scholar 

  23. Sommer, A., Paltauf, F., and Hermetter, A., 1990, Dipolar solvent relaxation on a nanosecond time scale in ether phospholipid membranes as determined by multifrequency phase and modulation fluorometry, Biochemistry 29: 11134–11140.

    Article  CAS  Google Scholar 

  24. Hutterer, R., Schneider, F. W., Lanig, H., and Hof, M., 1997, Solvent relaxation behaviour of n-anthroyloxy fatty acids in PC-vesicles and paraffin oil: A time-resolved emission spectra study, Biochim. Biophys. Acta 1323: 195–207.

    Article  CAS  Google Scholar 

  25. Stryer, L., 1965, The interactions of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites, J. Mol. Biol. 13: 482–495.

    Article  CAS  Google Scholar 

  26. Murakami, H., and Kushida, T., 1994, Fluorescence properties of Zn-substituted myoglobin, J. Lumin. 58: 172–175.

    Article  CAS  Google Scholar 

  27. Lakowicz, J. R., and Baiter, A., 1982, Theory of phase-modulation fluorometry for excited state processes, Biophys. Chem. 16: 99–115.

    Article  CAS  Google Scholar 

  28. Grinvald, A., and Steinberg, I. Z., 1974, Fast relaxation processes in a protein revealed by the decay kinetics of tryptophan fluorescence, Biochemistry 13: 5170–5178.

    Article  CAS  Google Scholar 

  29. Lakowicz, J. R., and Cherek, H., 1980, Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence, J. Biol. Chem. 255: 831–834.

    CAS  Google Scholar 

  30. Lakowicz, J. R., and Baiter, A., 1982, Resolution of initially excited and relaxed states of tryptophan fluorescence by differential-wavelength deconvolution of time-resolved fluorescence decays, Biophys. Chem. 15: 353–360.

    Article  CAS  Google Scholar 

  31. Lakowicz, J. R., Szmacinski, H., and Gryczynski, I., 1988, Picosecond resolution of indole anisotropy decays and spectral relaxation by 2 GHz frequency-domain fluorometry, Photochem. Photobiol. 47: 31–41.

    Article  CAS  Google Scholar 

  32. Szmacinski, H., Lakowicz, J. R., and Gryczynski, I., unpublished observations.

    Google Scholar 

  33. Demchenko, A. P., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, H., and Fishman, M., 1993, Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease, Biophys. Chem. 48: 39–48.

    Article  CAS  Google Scholar 

  34. Demchenko, A. P., 1994, Protein fluorescence, dynamics and function: Exploration of analogy between electronically excited and biocatalytic transition states, Biochim. Biophys. Acta 1209: 149164.

    Google Scholar 

  35. Vekshin, N., Vincent, M., and Gallay, J., 1992, Excited-state lifetime distributions of tryptophan fluorescence in polar solutions. Evidence for solvent exciplex formation, Chem. Phys. Lett. 199: 459–464.

    Article  CAS  Google Scholar 

  36. Vincent, M., Gallay, J., and Demchenko, A. E,1995, Solvent relaxation around the excited state of indole: Analysis of fluorescence lifetime distributions and time-dependence spectral shifts, J. Phys. Chem. 99: 14931–14941.

    Google Scholar 

  37. Vincent, M., Gallay, J., and Demchenko, A. P., 1997, Dipolar relaxation around indole as evidenced by fluorescence lifetime distributions and time-dependence spectral shifts, J. Fluoresc. 7: 107S - 1105.

    Article  CAS  Google Scholar 

  38. Weber, G., and Lakowicz, J. R., 1973, Subnanosecond solvent relaxation studies by oxygen quenching of fluorescence, Chem. Phys. Lett. 22: 419–423.

    Article  CAS  Google Scholar 

  39. Rotkiewicz, K., Grabowski, Z. R., and Jasny, J., 1975, Picosecond isomerization kinetics of excited p-dimethylaminobenzonitriles studied by oxygen quenching of fluorescence, Chem. Phys. Lett. 34: 55–100.

    Article  CAS  Google Scholar 

  40. Lakowicz, J. R., and Hogen, D., 1981, Dynamic properties of the lipid-water interface of model membranes as revealed by lifetime-resolved fluorescence emission spectra, Biochemistry 20: 1366 1373.

    Google Scholar 

  41. Fleming, G. R., and Cho, M., 1996, Chromophore-solvent dynamics, Annu. Rev. Phys. Chem. 47: 109–134.

    Article  CAS  Google Scholar 

  42. Castner, E. W., Maroncelli, M., and Fleming, G. R., 1987, Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents, J. Chem. Phys. 86: 1090–1097.

    Article  CAS  Google Scholar 

  43. Su, S.-G., and Simon, J. D., 1987, Solvation dynamics in ethanol, J. Phys. Chem. 91: 2693–2696.

    Article  CAS  Google Scholar 

  44. Simon, J. D., 1988, Time-resolved studies of solvation in polar media, Acc. Chem. Res. 21: 128–134.

    Article  CAS  Google Scholar 

  45. Chapman, C. F., Fee, R. S., and Maroncelli, M., 1995, Measurements of the solute dependence of solvation dynamics in 1-propanol: The role of specific hydrogen-bonding interactions, J. Phys. Chem. 99: 4811–4819.

    Article  CAS  Google Scholar 

  46. Kahlow, M. A., Jarzeba, W., Kang, T. J., and Barbara, P. F, 1989, Femtosecond resolved solvation dynamics in polar solvents, J. Chem. Phys. 90: 151–158.

    Article  CAS  Google Scholar 

  47. Maroncelli, M., and Fleming, G. R., 1987, Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation, J. Chem. Phys. 86: 6221–6239.

    Article  CAS  Google Scholar 

  48. Jarzeba, W., Walker, G. C., Johnson, A. E., Kahlow, M. A., and Barbara, P. F., 1988, Femtosecond microscopic solvation dynamics of aqueous solutions, J. Phys. Chem. 92: 7039–7041.

    Article  CAS  Google Scholar 

  49. Bagchi, B., Oxtoby, D. W., and Fleming, G. R., 1984, Theory of the time development of the Stokes shift in polar media, Chem. Phys. 86:257–267.

    Article  CAS  Google Scholar 

  50. Castner, E. W., Fleming, G. R., and Bagchi, B., 1988, Influence of non-Debye relaxation and of molecular shape on the time-dependence of the Stokes shift in polar media, Chem. Phys. Lett. 143: 270–276.

    Article  CAS  Google Scholar 

  51. Castner, E. W., Bagchi, B., Maroncelli, M., Webb, S. P., Ruggiero, A. J., and Fleming, G. R., 1988, The dynamics of polar solvation, Ber. Bunsenges. Phys. Chem. 92: 363–372.

    CAS  Google Scholar 

  52. Bakhshiev, N. G., 1964, Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions, VII. Theory (general case of an isotropic solution), Opt. Spectrosc. 16: 446–451.

    Google Scholar 

  53. Castner, E. W, Fleming, G. R., Bagchi, B., and Maroncelli, M., 1988, The dynamics of polar solvation: Inhomogeneous dielectric continuum models, J. Chem. Phys. 89: 3519–3534.

    Article  CAS  Google Scholar 

  54. Piterskaya, I. V., and Bakhshiev, N. G., 1963, Quantitative investigation of the temperature dependence of the absorption and fluorescence spectra of complex molecules, Akad. Nauk SSSR, Bull. Phys. Sci. 27: 625–629.

    Google Scholar 

  55. Bushuk, B. A., and Rubinov, A. N., 1997, Effect of specific intermolecular interactions on the dynamics of fluorescence spectra of dye solutions, Opt. Spectrosc. 82: 530–533.

    Google Scholar 

  56. Kaatze, U., and Uhlendorf, V., 1981, The dielectric properties of water at microwave frequencies, Z Phys. Chem. N. E. 126: 151–165.

    Article  CAS  Google Scholar 

  57. Cole, K. S., and Cole, R. H., 1941, Dispersion and absorption in dielectrics, J. Chem. Phys. 9: 341–351.

    Article  CAS  Google Scholar 

  58. Fellner-Feldegg, H., 1969, The measurement of dielectrics in the time domain, J. Phys. Chem. 75: 616–623.

    Article  Google Scholar 

  59. Davidson, D. W., and Cole, R. H., 1951, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, J. Chem. Phys. 19: 1484–1490.

    Article  CAS  Google Scholar 

  60. Denny, D. J., and Cole, R. H., 1955, Dielectric properties of methanol and methanol-1-propanol solutions, J. Chem. Phys. 23: 1767–1772.

    Article  Google Scholar 

  61. McDuffie, G. E., and Litovitz, T. A., 1962, Dielectric relaxation in associated liquids, J. Chem. Phys. 37: 1699–1705.

    Article  CAS  Google Scholar 

  62. Gard, S. K., and Smyth, C. P., 1965, Microwave absorption and molecular structure in liquids LXII. The three dielectric dispersion regions of the normal primary alcohols, J. Phys. Chem. 69: 1294–1301.

    Article  Google Scholar 

  63. Bamford, C. H., and Compton, R. G., 1985, Chemical Kinetics, Elsevier, New York, 404 pp.

    Google Scholar 

  64. Szmacinski, H., Gryczynski, I., and Lakowicz, J. R., 1996, Resolution of multiexponential spectral relaxation of Yt-base by global analysis of collisionally quenched samples, J. Fluoresc. 6: 177–185.

    Article  CAS  Google Scholar 

  65. Veselova, T. V., Limareva, L. A., Cherkasov, A. S., and Shirokov, V. I., 1965, Fluorometric study of the effect of solvent on the fluorescence spectrum of 3-amino-N-methylphthalimide, Opt. Spectrosc. 19: 39–43.

    Google Scholar 

  66. Lakowicz, J. R., Bevan, D. R., Maliwal, B. P., Cherek, H., and Batter, A., 1983, Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes, Biochemistry 22: 5714–5722.

    Article  CAS  Google Scholar 

  67. Lakowicz, J. R., Cherek, H., and Bevan, D. R., 1980, Demonstration of nanosecond dipolar relaxation in biopolymers by inversion of apparent fluorescence phase shift and demodulation lifetimes, J. Biol. Chem. 255: 4403–4406.

    CAS  Google Scholar 

  68. Röcker, C., Heilemann, A., and Fromherz, P., 1996, Time-resolved fluorescence of a hemicyanine dye: Dynamics of rotamerism and resolvation, J. Phys. Chem. 100: 12172–12177.

    Article  Google Scholar 

  69. Knutson, J. R., Walbridge, D. G., and Brand, L., 1982, Decay associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase, Biochemistry 21: 4671–4679.

    Article  CAS  Google Scholar 

  70. Rudik, K. I., and Pikulik, L. G., 1971, Effect of the exciting light on the fluorescence spectra of phthalimide solutions, Opt. Spectrosc. 30: 147–148.

    Google Scholar 

  71. Rubinov, A. N., and Tomin, V.I., 1970, Bathochromic luminescence in solutions of organic dyes at low temperatures, Opt. Spectrosc. 29: 578–580.

    Google Scholar 

  72. Galley, W. C., and Purkey, R. M., 1970, Role of heterogeneity of the solvation site in electronic spectra in solution, Proc. Natl. Acad. Sci. U.S.A. 67: 1116–1121.

    Article  CAS  Google Scholar 

  73. Itoh, K., and Azumi, T., 1973, Shift of emission band upon excitation at the long wavelength absorption edge, Chem. Phys. Lett. 22: 395399.

    Google Scholar 

  74. Azumi, T., Itoh, K., and Shiraishi, H., 1976, Shift of emission band upon the excitation at the long wavelength absorption edge. III. Temperature dependence of the shift and correlation with the time dependent spectral shift, J. Chem. Phys. 65: 2550–2555.

    Article  CAS  Google Scholar 

  75. Itoh, K., and Azumi, T., 1975, Shift of the emission band upon excitation at the long wavelength absorption edge. II. Importance of the solute–solvent interaction and the solvent reorientation relaxation process, J. Chem. Phys. 62: 3431–3438.

    Article  CAS  Google Scholar 

  76. Kawski, A., Ston, M., and Janie, I., 1983, On the intensity distribution within photoluminescence bands in rigid and liquid solutions, Z Naturforsch. A 38: 322–324.

    Google Scholar 

  77. Lakowicz, J. R., and Keating-Nakamoto, S., 1984, Red-edge excitation of fluorescence and dynamic properties of proteins and membranes, Biochemistry 23: 3013–3021.

    Article  CAS  Google Scholar 

  78. Demchenko, A. P., 1982, On the nanosecond mobility in proteins: Edge excitation fluorescence red shift of protein-bound 2-(p-toluidinylnaphthalene)-6-sulfonate, Biophys. Chem. 15: 101–109.

    Article  CAS  Google Scholar 

  79. Shcherbatska, N. V., van Hoek, A., Visser, A. J. W. G., and Koziol, J., 1994, Molecular relaxation spectroscopy of lumichrome, J. Photochem. Photobiol., A: Chem. 78: 241–246.

    CAS  Google Scholar 

  80. Demchenko, A. P., and Shcherbatska, N. V., 1985, Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer, Biophys. Chem. 22: 131–143.

    Article  CAS  Google Scholar 

  81. Raudino, A., Guerrera, F., Asero, A., and Rizza, V., 1983, Application of red-edge effect on the mobility of membrane lipid polar head groups, FEBS Lett. 159: 43–46.

    Article  CAS  Google Scholar 

  82. Demchenko, A. P., and Ladokhin, A. S., 1988, Temperature-dependent shift of fluorescence spectra without conformational changes in protein: Studies of dipole relaxation in the melittin molecule, Biochim. Biophys. Acta 955: 352–360.

    Article  CAS  Google Scholar 

  83. Conti, C., and Forster, L. S., 1974, Non-exponential decay of indole fluorescence—the red-edge effect, Biochem. Biophys. Res. Commun. 57: 1287–1292.

    Article  CAS  Google Scholar 

  84. Nemkovich, N. A., Rubinov, A. N., and Tomin, V. I., 1981, Kinetics of luminescence spectra of rigid dye solutions due to directed electronic energy transfer, J Lumin. 23: 349–361.

    Article  CAS  Google Scholar 

  85. Milton, J. G., Purkey, R. M., and Galley, W. C., 1978, The kinetics of solvent reorientation in hydroxylated solvents from the exciting-wavelength dependence of chromophore emission spectra, J Chem. Phys. 68: 5396–5403.

    Article  CAS  Google Scholar 

  86. Morgenthaler, M. J. E., Meech, S. R., and Yoshihara, K., 1992, The inhomogeneous broadening of the electronic spectra of dyes in glycerol solution, Chem. Phys. Lett. 197: 537–541.

    Article  CAS  Google Scholar 

  87. Gakamsky, D. M., Demchenko, A. E, Nemkovich, N. A., Rubinov, A. N., Tomin, V. I., and Shcherbatska, N. V, 1992, Selective laser spectroscopy of 1-phenylnaphthylamine in phospholipid membranes, Biophys. Chem. 42: 49–61.

    Article  CAS  Google Scholar 

  88. Weber, G., and Shinitzky, M., 1970, Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum, Proc. Natl. Acad. Sci. U.S.A. 65: 823–830.

    Article  CAS  Google Scholar 

  89. Valeur, B., and Weber, G., 1977, Anisotropic rotations in 1-naphthylamine, existence of a red-edge transition moment normal to the ring plane, Chem. Phys. Lett. 45: 140–144.

    Article  CAS  Google Scholar 

  90. Valeur, B., and Weber, G., 1978, A new red-edge effect in aromatic molecules: Anomaly of apparent rotation revealed by fluorescence polarization, J. Phys. Chem. 69: 2393–2400

    Article  CAS  Google Scholar 

  91. Mantulin, W. W., and Weber, G., 1977, Rotational anisotropy and solvent–fluorophore bonds: An investigation by differential polarized-phase fluorometry, J. Chem. Phys. 66: 4092–4099.

    Article  CAS  Google Scholar 

  92. Brand, L., Seliskar, C. J., and Turner, D. C., 1971, The effects of chemical environment on fluorescence probes, in Probes of Structure and Function of Macromolecules and Membranes, B. Chance, C. P. Lee, and J. K. Blaisie (eds.), Academic Press, New York, pp. 17–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Dynamics of Solvent and Spectral Relaxation. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics