Skip to main content

Abstract

Fluorescence probes represent the most important area of fluorescence spectroscopy. One can spend a great deal of time describing the instrumentation for fluorescence spectroscopy, including light sources, monochromators, lasers, and detectors. However, in the final analysis, the wavelength and time resolution required of the instruments are determined by the spectral properties of the fluorophores. Furthermore, the information available from the experiments is determined by the properties of the probes. Only probes with nonzero anisotropies can be used to measure rotational diffusion, and the lifetime of the fluorophore must be comparable to the correlation time of interest. Only probes which are sensitive to pH can be used to measure pH. And only probes with reasonably long excitation and emission wavelengths can be used with tissues which display autofluorescence at short excitation wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demchenko, A. P., 1981, Ultraviolet Spectroscopy of Proteins, Springer-Verlag, New York.

    Google Scholar 

  2. Longworth, J. W., 1971, Luminescence of polypeptides and proteins, in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Welnryb (eds.), Plenum Press, New York, pp. 319–484.

    Chapter  Google Scholar 

  3. Velick, S. E, 1958, Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes, J. Biol. Chem. 233: 1455–1467.

    CAS  Google Scholar 

  4. Gafni, A., and Brand, L., 1976, Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase, Biochemistry 15: 3165–3171.

    Article  CAS  Google Scholar 

  5. Brochon, J.-C., Wahl, P., Monneuse-Doublet, M.-O., and Olomucki, A., 1977, Pulse fluorimetry study of octopine dehydrogenase-reduced nicotinamide adenine dinucleotide complexes, Biochemistry 16: 4594–4599.

    Article  CAS  Google Scholar 

  6. Churchich, J. E., 1965, Fluorescence properties of pyridoxamine 5-phosphate, Biochim. Biophys. Acta 102: 280–288.

    Article  CAS  Google Scholar 

  7. Honikel, K. O., and Madsen, N. B., 1972, Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents, J. Biol. Chem. 247: 1057–1064.

    CAS  Google Scholar 

  8. Vaccari, S., Benci, S., Peracchi, A., and Mozzarelli, A., 1997, Time-resolved fluorescence of pyridoxal 5’-phosphate-containing enzymes: Tryptophan synthetase and 0-acetylserine sulthydrylase, J. Fluoresc. 7: 135S - 137S.

    CAS  Google Scholar 

  9. Kwon, 0.-S., Blazquez, M., and Churchich, J. E., 1994, Luminescence spectroscopy of pyridoxic acid and pyridoxic acid bound to proteins, Eur. J. Biochem. 219: 807–812.

    Google Scholar 

  10. Xiao, G.-S., and Zhou, J.-M., 1996, Conformational changes at the active site of bovine pancreatic RNase A at low concentrations of 1. guanidine hydrochloride probed by pyridoxal 5’-phosphate, Biochim. Biophys. Acta 1294: 1–7.

    Article  Google Scholar 

  11. Churchich, J. E., 1986, Fluorescence properties of free and bound pyridoxal phosphate and derivatives, in Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects, Part A, D. Dolphin (ed.), Wiley, New York, pp. 545–567.

    Google Scholar 

  12. Churchich, J. E., 1976, Fluorescent probe studies of binding sites in proteins and enzymes, in Modem Fluorescence Spectroscopy, Vol, 2, E. L. Wehry (ed.), Plenum Press, New York, pp. 217–237.

    Chapter  Google Scholar 

  13. Vaccari, S., Benci, S., Peracchi, A., and Mozzarelli, A., 1996, Time-resolved fluorescence of tryptophan synthase, Biophys. Chem. 61: 922.

    Article  Google Scholar 

  14. Personal communication from Dr. Rebecca Richards-Kortum.

    Google Scholar 

  15. Visser, A. J. W. G., 1984, Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence, Photochem. Photobiol. 40: 703–706.

    Article  CAS  Google Scholar 

  16. Leenders, R., Kooijman, M., van Hoek, A., Veeger, C., and Visser, A. J. W. G., 1993, Flavin dynamics in reduced flavodoxins, Eue. J. Biochem. 211: 37–45.

    Article  CAS  Google Scholar 

  17. Wolfbeis, O. S., 1985, The fluorescence of organic natural products, in Molecular Luminescence Spectroscopy, S. G. Schulman (ed.), John Wiley & Sons, New York, Part 1, pp. 167–370.

    Google Scholar 

  18. Richards-Kortum, R., and Sevick-Muraca, E., 1996, Quantitative optical spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem. 47: 555–606.

    Article  CAS  Google Scholar 

  19. Li, B., and Lin, S.-X., 1996, Fluorescence-energy transfer in human estradiol 1713-dehydrogenase—NADH complex and studies on the coenzyme binding, Eur. J. Biochem. 235: 180–186.

    Article  CAS  Google Scholar 

  20. Haugland, R. P., 1996, Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc., Eugene, Oregon.

    Google Scholar 

  21. Hemmila, I. A., 1991, Applications of Fluorescence in Immunoassays, John Wiley & Sons, New York, pp. 107–167.

    Google Scholar 

  22. Weber, G., 1951, Polarization of the fluorescence of macromolecules, Biochem. J. 51: 155–167.

    Google Scholar 

  23. BioProbes 25, 1997, New Products and Applications, Molecular Probes, Inc., Eugene, Oregon.

    Google Scholar 

  24. Waggoner, A., 1995, Covalent labeling of proteins and nucleic acids with fluorophores, Methods Enzymol. 246: 362–373.

    Article  CAS  Google Scholar 

  25. Hemmila I. A., 1991, Applications of Fluorescence in Immunoassays, John Wiley & Sons, New York, page 67.

    Google Scholar 

  26. Johnson, I. D., Kang, H. C., and Haugland, R. P.,1991, Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores, Anal. Biochem. 198: 228–237.

    Google Scholar 

  27. Weber, G., and Farris, R J., 1979, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-Propionyl-2-(dimethylamino)naphthalene, Biochemistry 18: 3075–3078.

    Article  CAS  Google Scholar 

  28. Prendergast, E G., Meyer, M., Carlson, G. L., rida, S., and Potter, J. D., 1983, Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan), J. Biol. Chem. 258: 7541–7544.

    CAS  Google Scholar 

  29. Rottenberg, H., 1992, Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan, Biochemistry 31: 9473–9481.

    Article  CAS  Google Scholar 

  30. Slavik, J., 1982, Anilinonaphthalene sulfonate as a probe of membrane composition and function, Biochim. Biophys. Acta 694: 1–25.

    Article  CAS  Google Scholar 

  31. Daniel, E., and Weber, G., 1966, Cooperative effects in binding by bovine serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations, in Cooperative Effects in Binding by Albumin, 5: 1893–1900.

    Google Scholar 

  32. Prendergast, E. G., Haugland, R. P., and Callahan, P. J., 1981, 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5 triene: Synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20: 7333–7338.

    Google Scholar 

  33. Sklar, L. A., Hudson, B. S., Petersen, M., and Diamond, J., 1977, Conjugated polyene fatty acids on fluorescent probes: Spectroscopic characterization, Biochemistry 16: 813–818.

    Article  CAS  Google Scholar 

  34. Itoh, T., and Kohler, B. E., 1987, Dual fluorescence of diphenylpolyenes, J. Phys. Chem. 91: 1760–1764.

    Article  CAS  Google Scholar 

  35. Alford, P. C., and Palmer, T. F., 1982, Fluorescence of DPH derivatives, evidence for emission from S2 and S1 excited states, Chem. Phys. Lett. 86: 248–253.

    Article  CAS  Google Scholar 

  36. Cundall, R. B., Johnson, I., Jones, M. W., Thomas, E. W., and Munro, I. H., 1979, Photophysical properties of DPH derivatives, Chem. Phys. Lett. 64: 39–42.

    Article  CAS  Google Scholar 

  37. Kinnunen, P. K. J., Koiv, A., and Mustonen, P., 1993, Pyrene-labeled lipids as fluorescent probes in studies on biomembranes and membrane models, in Fluorescence Spectroscopy: New Methods and Applications, O. S. Wolfbeis (ed.), Springer-Verlag, New York, pp. 159–171.

    Chapter  Google Scholar 

  38. Smiley, S. T., Reers, M., Mottola-Hartshom, C., Lin, M., Chen, A., Smith, T. W., Steele, G. D., and Chen, L. B., 1991, Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1, Proc. Natl. Acad. Sci. U.S.A. 88: 3671–3675.

    Article  CAS  Google Scholar 

  39. Sims, P. J., Waggoner, A. S., Wang, C.-H., and Hoffman, J. F., 1974, Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles, Biochemistry 13: 3315–3336.

    Article  CAS  Google Scholar 

  40. Gross, E., Bedlack, R. S., and Loew, L. M., 1994, Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential, Biophys. J. 67: 208–216.

    Article  CAS  Google Scholar 

  41. Zhang, J., Davidson, R. M., Wei, M., and Loew, L. M., 1998, Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons, Biophys. J. 74: 48–53.

    Article  CAS  Google Scholar 

  42. Loew, L. M., 1996, Potentiometric dyes: Imaging electrical activity of cell membranes, Pure Appl. Chem. 68: 1405–1409.

    Article  CAS  Google Scholar 

  43. Loew, L. M., 1994, Voltage-sensitive dyes and imaging neuronal activity, Neuroprotocols 5: 72–79.

    CAS  Google Scholar 

  44. Dragsten, P. R., and Webb, W. W., 1978, Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540, Biochemistry 17: 5228–5240.

    Article  CAS  Google Scholar 

  45. Loew, L. M., 1994, Characterization of potentiometric membrane dyes, Adv. Chem. Ser. 235: 151–173.

    Article  CAS  Google Scholar 

  46. Waggoner, A. S., 1979, Dye indicators of membrane potential, Annu. Rev. Biophys. Bioeng. 8: 47–68.

    Article  CAS  Google Scholar 

  47. Loew, L. M., 1982, Design and characterization of electrochromic membrane probes, J. Biochem. Biophys. Methods 6: 243–260.

    Article  CAS  Google Scholar 

  48. Thompson, R. B., 1994, Red and near-infrared fluorometry, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 151–222.

    Google Scholar 

  49. Southwick, P. L., Ernst, L. A., Tauriello, E. W., Parker, S. R., Mujumdar, R. B., Mujumdar, S. W., Clever, H. A., and Waggoner, A. S., 1990, Cyanine dye labeling reagents—carboxymetltylindocyanine succinimidyl esters, Cytometry 11: 418–430.

    Article  CAS  Google Scholar 

  50. Rahavendran, S. V., and Karnes, H. T., 1996, Application of rhodamine 800 for reversed phase liquid chromatographic detection using visible diode laser induced fluorescence, Anal. Chem. 68: 3763–3768.

    Article  CAS  Google Scholar 

  51. Rahavendran, S. V., and Karnes, H. T., 1996, An oxazine reagent for derivatization of carboxylic acid analytes suitable for liquid chromatographic detection using visible diode laser-induced fluorescence, J. Pharm. Biomed. Anal. 15: 83–98.

    Article  CAS  Google Scholar 

  52. Flanagan, J. H., Romero, S. E., Legendre, B. L., Hammer, R. P., and Soper, A., 1997, Heavy-atom modified near-IR fluorescent dyes for DNA sequencing applications: Synthesis and photophysical characterization, Pmc. SPIE 2980: 328–337.

    Article  Google Scholar 

  53. Owens, C. V., Davidson, Y. Y., Kar, S., and Soper, S. A., 1997, High-resolution separation of DNA restriction fragments using capillary electrophoresis with near-IR, diode-based, laser-induced fluorescence detection, Anal. Chem. 69: 1256–1261.

    Article  CAS  Google Scholar 

  54. Matsuoka, M., 1990, Infrared Absorbing Dyes, Plenum Press, New York.

    Google Scholar 

  55. Leznoff, C. C., and Lever, A. B. P., 1989, Phthalocyanines: Properties and Applications, VCH Publishers, New York.

    Google Scholar 

  56. Kessler, M. A., and Wolfbeis, O. S., 1992, Laser-induced fluorometric determination of albumin using longwave absorbing molecular probes, Anal. Biochem. 200: 254–259.

    Article  CAS  Google Scholar 

  57. Steiner, R. F., and Kubota, Y., 1983, Fluorescent dye—nucleic acid complexes, in Excited States of Biopolymers, R. F. Steiner (ed.), Plenum Press, New York, pp. 203–254.

    Chapter  Google Scholar 

  58. Georghiou, S., 1977, Interaction of acridine drugs with DNA and nucleotides, Photochem. Photobiol. 26: 59–68.

    Article  CAS  Google Scholar 

  59. Suh, D., and Chaires, J. B., 1995, Criteria for the mode of binding of DNA binding agents, Bioorg. Med. Chem. 3: 723–728.

    Article  CAS  Google Scholar 

  60. Eriksson, S., Kim, S. K., Kubista, M., and Norden, B., 1993, Binding of 4’,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: Evidence for an allosteric conformational change, Biochemistry 32: 2987–2998.

    Article  CAS  Google Scholar 

  61. Parkinson, J. A., Barber, J., Douglas, K. T., Rosamond, J., and Sharpies, D., 1990, Minor-groove recognition of the self-complementary duplex d(CGCGAATTCGCG)2 by Hoechst 33258: A high-field NMR study, Biochemistry 29: 10181–10190.

    Article  CAS  Google Scholar 

  62. Loontiens, F. G., McLaughlin, L. W., Diekmann, S., and Clegg, R. M., 1991, Binding of Hoechst 33258 and 4’,6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substitutents, Biochemistry 30: 182–189.

    Article  CAS  Google Scholar 

  63. Haq, I., Ladbury, J. E., Chowdhry, B. Z., Jenkins, T. C., and Chaires, J. B., 1997, Specific binding of Hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: Calorimetric and spectroscopic studies, J. Mol. Biol. 271: 244–257.

    Article  CAS  Google Scholar 

  64. Glazer, A. N., Peck, K., and Matheis, R. A., 1990, A stable double-stranded DNA ethidium homodimer complex: Application to picogram fluorescence detection of DNA in agarose gels, Pmc. Natl. Acad. Sci, U.S.A., 87: 3851–3855.

    Article  CAS  Google Scholar 

  65. Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M A, Haugland, R. P., Mathies, R. A., and Glazer, A. N., 1992, Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: Properties and applications, Nucleic Acids Res. 20: 2803–2812.

    Article  CAS  Google Scholar 

  66. Wu, P., Li, H., Nordlund, T. M., and Rigler, R., 1990, Multistate modeling of the time and temperature dependence of fluorescence from 2-aminopurine in a DNA decamer, Proc. SPIE 1204: 262–269.

    Article  CAS  Google Scholar 

  67. Nordlund, T. M., Wu, P., Anderson, S., Nilsson, L., Rigler, R., Graslund, A., McLaughlin, L. W., and Gildea, B., 1990, Structural dynamics of DNA sensed by fluorescence from chemically modified bases, Proc. SPIE 1204: 344–353.

    Article  CAS  Google Scholar 

  68. Hawkins, M. E., Pfleiderer, W., Mazumder, A., Pommier, Y. G., and Balis, F. M., 1995, Incorporation of a fluorescent guanosine analog into oligonucleotides and its application to a real time assay for the 11IV-1 integrase 3’-processing reaction, Nucleic Acids Res. 23: 2872–2880.

    Article  CAS  Google Scholar 

  69. Kulkosky, J., and Skalka, A. M., 1990, HIV DNA integration: Observations and inferences, J. Acquir. Immune Defic. Synth: 3: 839–851.

    CAS  Google Scholar 

  70. Brown, P. O., 1990, Integration of retroviral DNA, in Current Topics in Microbiology and Immunology, Vol. 157, Springer-Verlag, Berlin, pp. 19–48.

    Google Scholar 

  71. Biwersi, J., Tulk, B., and Verkman, A. S., 1994, Long-wavelength chloride-sensitive fluorescent indicators, Anal. Biochem. 219: 139–143.

    CAS  Google Scholar 

  72. Valeur, B., 1994, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 21–48.

    Google Scholar 

  73. Poenie, M., and Chen, C.-S., 1993, New fluorescent probes for cell biology, in Optical Microscopy, B. Herman and J. J. Lemasters (eds.), Academic Press, New York, pp. 1–25.

    Google Scholar 

  74. Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.

    Google Scholar 

  75. Czarnik, A. W., 1994, Fluorescent chemosensors for cations, anions, and neutral analytes, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 49–70.

    Google Scholar 

  76. Haugland, R. P., and Johnson, I. D., 1993, Detecting enzymes in living cells using fluorogenic substrates, J. Fluoresc. 3: 119–127.

    Article  CAS  Google Scholar 

  77. Thou, M., Upson, R. H., Diwu, Z., and Haugland, R. P., 1996, A fluorogenic substrate for 3-glucuronidase: Applications in fluorometric, polyacrylamide gel and histochemical assays, J. Biochem. Biophys. Methods 33: 197–205.

    Article  Google Scholar 

  78. Gershkovich, A. A., and Kholodovych, V. V., 1996, Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS), J. Biochem. Biophys. Methods 33: 135–162.

    Article  CAS  Google Scholar 

  79. Geoghegan, K. F, 1996, Improved method for converting an unmodified peptide to an energy-transfer substrate for a proteinase, Bioconjug. Chem. 7: 385–391.

    Article  CAS  Google Scholar 

  80. Matayoshi, E. D., Wang, G. T., Krafft, G. A., and Erickson, J., 1990, Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer, Science 247: 954–957.

    Article  CAS  Google Scholar 

  81. Zandonella, G., Haalck, L., Spener, F., Faber, K., Paltauf, E., and Hermetter, A., 1995, Inversion of lipase stereospecificity for fluoro-genic alkyldiacyl glycerols: Effect of substrate solubilization, Eur. J. Biochem. 231: 50–55.

    Article  CAS  Google Scholar 

  82. Duque, M., Graupner, M., Stütz, H., Wicher, I., Zechner, R., Paltauf, E, and Hermetter, A., 1996, New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities, J. Lipid Res. 37: 868–876.

    CAS  Google Scholar 

  83. Naleway, J. J., Fox, C. M. J., Robinhold, D., Terpetschnig, E., Olson, N. A., and Haugland, R. P., 1994, Synthesis and use of new fluorogenic precipitating substrates, Tetrahedron Lett. 35: 8569–8572.

    Article  CAS  Google Scholar 

  84. Huang, Z., Terpetschnig, E., You, W., and Haugland, R. P., 1992, 2-(2’-Phosphoryloxyphenyl)-4(311)-quinazolinone derivatives as fluorogenic precipitating substrates of phosphatases, Anal. Biochem. 207: 32–39.

    Google Scholar 

  85. Ziomek, C. A., Lepire, M. L., and Tones, I., 1990, A highly fluorescent simultaneous azo dye technique for demonstration of nonspecific alkaline phosphatase activity, J. Histochem. Cytochem. 38: 437–442.

    Article  CAS  Google Scholar 

  86. Hale, J. E., and Schroeder, E, 1982, Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol, Eur. J. Biochem. 122: 649–661.

    Article  CAS  Google Scholar 

  87. Fischer, R. T., Cowlen, M. S., Dempsey, M. E., and Schroeder, E, 1985, Fluorescence of A5.7,9(1’)’22-ergostatetraen-30-ol in micelles, sterol carrier protein complexes, and plasma membranes, Biochemistry 24: 3322–3331.

    Article  CAS  Google Scholar 

  88. Schroeder, E, Barenholz, Y., Gratton, E., and Thompson, T. E., 1987, A fluorescence study of dehydroergosterol in phosphatidylcholne bilayer vesicles, Biochemistry 26: 2441–2448.

    Article  CAS  Google Scholar 

  89. Loura, L. M. S., and Prieto, M., 1997, Aggregation state of dehydroergosterol in water and in a model system of membranes, J. Fluoresc. 7: 1735–175S.

    Google Scholar 

  90. Hwang, K.-J., O’Neil, J. P., and Katzenellenbogen, J. A., 1992, 5,6,11,12-Tetrahydrochrysenes: Synthesis of rigid stilbene systems designed to be fluorescent ligands for the estrogen receptor, J. Org. Chem. 57: 1262–1271.

    Google Scholar 

  91. Bowen, C. M., and Katzenellenbogen, J. A., 1997, Synthesis and spectroscopic characterization of two aza-tetrahydrochrysenes as potential fluorescent ligands for the estrogen receptor, J. Org. Chem. 62: 7650–7657.

    Article  CAS  Google Scholar 

  92. Wolkowicz, P. E., Pownall, H. J., and McMillin-Wood, J. B., 1982, (1-Pyrenebutyryl)camitine and 1-pyrenebutyryl coenzyme A: Fluorescent probes for lipid metabolite studies in artificial and natural membranes, Biochemistry 21: 2990–2996.

    Google Scholar 

  93. Rossomando, E. E, Jahngen, J. H., and Eccleston, J. E, 1981, Formycin 5’-triphosphate, a fluorescent analog of ATP, as a substrate for adenylate cyclase, Proc. Natl. Acad. Sci. U.S.A. 78: 2278–2282.

    Article  CAS  Google Scholar 

  94. Kung, C. E., and Reed, J. K., 1986, Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation, Biochemistry 25:6114–6121. See also Biochemistry 28: 6678–6686 (1989).

    Article  CAS  Google Scholar 

  95. Iwaki, T., Torigoe, C., Noji, M., and Nakanishi, M., 1993, Antibodies for fluorescent molecular rotors, Biochemistry 32: 7589–7592.

    Article  CAS  Google Scholar 

  96. Rettig, W., and Lapouyade, R., 1994, Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 109–149.

    Google Scholar 

  97. Teale, E. W. J., and Dale, R. E., 1970, Isolation and spectral characterization of phycobiliproteins, Biochem. J. 116: 161–169.

    CAS  Google Scholar 

  98. Glazer, A. N., 1985, Light harvesting by phycobilisomes, Annu. Rev. Biophys. Biophys. Chem. 14: 47–77.

    Article  CAS  Google Scholar 

  99. MacColl, R., and Guard-Friar, D., 1987, Phycobiliproteins, CRC Press, Boca Raton, Florida.

    Google Scholar 

  100. Glazer. A. N., and Stryer, L., 1984, Phycofluor probes, Trends Biochem. Soc. 423–427.

    Google Scholar 

  101. White, J. C., and Stryer, L., 1987, Photostability studies of phycobiliprotein fluorescent labels, Anal. Biochem. 161: 442–452.

    Article  CAS  Google Scholar 

  102. Oi, V. T., Glazer, A. N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol. 93: 981–986.

    Article  CAS  Google Scholar 

  103. Holzwarth, A. R., Wendler, J., and Suter, G. W., 1987, Studies on chromophore coupling in isolated phycobiliproteins, Biophys. J. 51: 1–12.

    Article  CAS  Google Scholar 

  104. Kronick, M. N., and Grossman, P. D., 1983, Immunoassay techniques with fluorescent phycobiliprotein conjugates, Clin. Chem. 29: 1582–1586.

    CAS  Google Scholar 

  105. Kronick, M. N., 1986, The use of phycobiliproteins as fluorescent labels in immunoassays, J. Immun. Methods 92: 1–13.

    Article  CAS  Google Scholar 

  106. Nguyen, D. C., Keller, R. A., Jett, J. H., and Martin, J. C., 1987, Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser induced fluorescence, Anal. Chem. 59: 2158–2161.

    Article  CAS  Google Scholar 

  107. Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., and Remington, S. J., 1996, Crystal structure of the Aequorea victoria green fluorescent protein, Science 273: 1392–1395.

    Article  CAS  Google Scholar 

  108. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D.C., 1994, Green fluorescentprotein as a marker for gene expression, Science 263: 802–805.

    Article  CAS  Google Scholar 

  109. Jellyfish light up mice,“ Science 277:41.

    Google Scholar 

  110. Ehrig, T., O’Kane, D. J., and Prendergast, F. G., 1995, Green fluorescent protein mutants with altered fluorescence excitation spectra, FEBS Lett. 367: 163–166.

    Article  CAS  Google Scholar 

  111. Delagrave, S., Hawtin, R. E., Silva, C. M., Yang, M. M., and Youvan, D. C., 1995, Red-shifted excitation mutants of the green fluorescent protein, Bio/l’echnology 13: 151–154.

    Article  CAS  Google Scholar 

  112. Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y., 1995, Understanding, improving and using green fluorescent proteins, Trends Biochem. Soc. 20: 448–455.

    Article  CAS  Google Scholar 

  113. Heim, R., and Tsien, R. Y., 1996, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Curr. Biol. 6: 178–182.

    Article  CAS  Google Scholar 

  114. Petushkov, V. N., Gibson, B. G., and Lee, J., 1995, Properties of recombinant fluorescent proteins from Photobacterium leiognathi and their interaction with luciferase intermediates, Biochemistry 34: 3300–3309.

    Article  CAS  Google Scholar 

  115. Li, L., Murphy, J. T., and Lagarias, J. C., 1995, Continuous fluorescence assay of phytochrome assembly in vitro, Biochemistry 34: 7923–7930.

    Article  CAS  Google Scholar 

  116. Murphy, J. T., and Lagarias, J. C., 1997, Purification and characterization of recombinant affinity peptide-tagged oat phytochrome A, Photochem. Photobiol. 65: 750–758.

    Article  CAS  Google Scholar 

  117. Murphy, J. T., and Lagarias, J. C., 1997, The phytofluors: A new class of fluorescent protein probes, Curr. Biol. 7: 870–876.

    Article  CAS  Google Scholar 

  118. Davenport, L., and Targowski, P., 1996, Submicrosecond phospholipid dynamics using a long lived fluorescence emission anisotropy probe, Biophys. J. 71: 1837–1852.

    Article  CAS  Google Scholar 

  119. Davenport, L., 1994, Fluorescent phospholipid analogs and fatty acid derivatives, U.S. patent 5,332, 794, pp. 1–14.

    Google Scholar 

  120. Richardson, F. S., 1982, Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems, Chem.

    Google Scholar 

  121. Rev.82:541–552.

    Google Scholar 

  122. Sabbatini, N., and Guardigli, M., 1993, Luminescent lanthanide complexes as photochemical supramolecular devices, Coord. Chem. Rev. 123: 201–228.

    Article  CAS  Google Scholar 

  123. Balzani, V., and Ballardini, R., 1990, New trends in the design of luminescent metal complexes, Photochem. Photobiol. 52: 409416.

    Google Scholar 

  124. Li, M., and Selvin, P. R., 1995, Luminescent polyaminocarboxylate chelates of terbium and europium: The effect of chelate structure, J. Am. Chem. Soc. 117: 8132–8138.

    Article  CAS  Google Scholar 

  125. Martin, R. B., and Richardson, F. S., 1979, Lanthanides as probes for calcium in biological systems, Q. Rev. Biophys. 12: 181–209.

    Article  CAS  Google Scholar 

  126. Bruno, J., Horrocks, W. De W., and Zauhar, R. J., 1992, Europium(III) luminescence and tyrosine to terbium(III) energy transfer studies of invertebrate (octopus) calmodulin, Biochemistry 31: 7016–7026.

    Article  CAS  Google Scholar 

  127. Horrocks, W. DeW., and Sudnick, D. R., 1981, Lanthanide ion luminescence probes of the structure of biological macromolecules, Acc. Chem. Res. 14: 384–392.

    Article  CAS  Google Scholar 

  128. Lumture, J. B., and Wensel, T. G., 1993, A novel reagent for labelling macromolecules with intensity luminescent lanthanide complexes, Tetrahedron Lett. 34: 4141–4144.

    Article  Google Scholar 

  129. Lamture, J. B., and Wensel, T. G., 1995, Intensely luminescent immunoreactive conjugates of proteins and dipicolinate-based polymeric Tb(III) chelates, Bioconjug. Chem. 6: 88–92.

    Article  CAS  Google Scholar 

  130. Lövgren, T., and Pettersson, K., 1990, Time-resolved fluoroimmunoassay, advantages and limitations, in Luminescence Immunoassay and Molecular Applications, K. Van Dyke and R. Van Dyke (eds.), CRC Press, Boca Raton, Florida, pp. 233–253.

    Google Scholar 

  131. Hemmila, I., 1993, Progress in delayed fluorescence immunoassay, in Fluorescence Spectroscopy, New Methods and Applications, O. S. Wollbeis (ed.), Springer-Verlag, New York, pp. 259–266.

    Chapter  Google Scholar 

  132. Terpetschnig, E., Szmacinski, H., and Lakowicz, J. R., 1997, Long lifetime metal—ligand complexes as probes in biophysics and clinical chemistry, Methods Enzymol. 278: 295–321.

    Article  CAS  Google Scholar 

  133. Szmacinski, H., Terpetschnig, E., and Lakowicz, J. R., 1996, Synthesis and evaluation of Ru-complexes as anisotropy probes for protein hydrodynamics and immunoassays of high molecular-weight antigens, Biophys. Chem. 62: 109–120.

    Article  CAS  Google Scholar 

  134. Guo, X.-Q., Castellano, F N., Li, L., and Lakowicz, J. R., 1998, Use of a long-lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular weight analytes, Anal. Chem. 70: 632–637.

    Article  CAS  Google Scholar 

  135. Friedman, A. E., Chambron, J.-C., Sauvage, J.-P., Turro, N. J., and Barton, J. K., 1990, Molecular light switch for DNA Ru(bp)1)2(dppz)2+, J. Am. Chem. Soc. 112: 4960–4962.

    Article  CAS  Google Scholar 

  136. Hag, I., Lincoln, P., Suh, D., Norden, B., Chowdhry, B. Z., and Chaires, J. B., 1995, Interaction of 0- and A-[Ru(phen)2DPPZ]2+ with DNA: A calorimetric and equilibrium binding study, J. Am. Chem. Soc. 117: 4788–4796.

    Article  Google Scholar 

  137. Demas, J. N., and De Graff, B. A., 1992, Applications of highly luminescent transition metal complexes in polymer systems, Macromol. Chem. Macromol. Symp. 59: 35–51.

    Article  CAS  Google Scholar 

  138. Li, L., Szmacinski, H., and Lakowicz, J. R., 1997, Long-lifetime lipid probe containing a luminescent metal—ligand complex, Biospectroscopy 3: 155–159.

    Article  CAS  Google Scholar 

  139. Giuliano, K. A., Post, P. L., Hahn, K. M., and Taylor, D. L., 1995, Fluorescent protein biosensors: Measurement of molecular dynamics in living cells, Annu. Rev. Biophys. Biomol. Struct. 24: 405–434.

    Article  CAS  Google Scholar 

  140. Marvin, J. S., Corcoran, E. E., Hattangadi, N. A., Zhang, J. V., Gere, S. A., and Hellinga, H. W., 1997, The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors, Proc. Natl. Acad. Sci. U.S.A. 94: 4366–4371.

    Article  CAS  Google Scholar 

  141. Stewart, J. D, Roberts, V. A., Crowder, M. W., Getzoff, E. D., and Benkovic, S. J., 1994, Creation of a novel biosensor for Zn(II), J. Am. Chem. Soc. 116: 415–416.

    Article  CAS  Google Scholar 

  142. Walkup, G. K., and Imperiali, B., 1996, Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc, J. Am. Chem. Soc. 118: 3053–3054.

    Article  CAS  Google Scholar 

  143. Illsley, N. P., and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.

    Article  CAS  Google Scholar 

  144. Kao, J. P. Y., 1994, Practical aspects of measuring [Call] with fluorescent indicators. in Methods in Cell Biology, Vol. 40, R. Nuccitelli (ed.), Academic Press, New York, pp. 155–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Fluorophores. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics