Skip to main content

Counting Singularities in Liquid Crystals

  • Chapter
Variational Methods

Abstract

Energy minimizing harmonic maps from the ball to the sphere arise in the study of liquid crystal geometries and in the classical nonlinear sigma model. We linearly dominate the number of points of discontinuity of such a map by the energy of its boundary value function. Our bound is optimal (modulo the best constant) and is the first bound of its kind. We also show that the locations and numbers of singular points of minimizing maps is often counterintuitive; in particular, boundary symmetries need not be respected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Almgren, W. Browder and E. Lieb, Co-area, liquid crystals and minimal surfaces, in Partial Differential Equations, ed. S.S. Chern, Springer Lecture Notes in Math. 1306, 1–12 (1988).

    Google Scholar 

  2. F. Almgren and E. Lieb, Singularities of energy minimizing maps from the ball to the sphere: examples counterexamples and bounds, Ann. of Math., Nov. 1988. See also Singularities of energy minimizing maps from the ball to the sphere, Bull. Amer. Math. Soc. 17, 304–306 (1987).

    MathSciNet  MATH  Google Scholar 

  3. H. Brezis, J-M. Coron and E. Lieb, Harmonic maps with defects, Commun. Math. Phys. 107, 649–705 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Hardt and F. H. Lin, A remark on H1 mappings, Manuscripta Math. 56, 1–10 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Hardt and F. H. Lin, Stability of singularities of minimizing harmonic maps,J. Diff. Geom., to appear.

    Google Scholar 

  6. M. KlémanPoints, lignes, parois dans les fluides anisotropes et les solides cristalline Les Éditions de Physique (Orsay), I, 36–37.

    Google Scholar 

  7. L. Simon, Asymptotics for a class of nonlinear evolution equations with applications to geometric problems, Ann. of Math. 118, 525–571 (1983).

    Article  MathSciNet  Google Scholar 

  8. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17, 307–335 (1982).

    MathSciNet  MATH  Google Scholar 

  9. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem of harmonic maps, J. Diff. Geom. 18, 253–268 (1983).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Almgren, F.J., Lieb, E.H. (1990). Counting Singularities in Liquid Crystals. In: Berestycki, H., Coron, JM., Ekeland, I. (eds) Variational Methods. Progress in Nonlinear Differential Equations and Their Applications, vol 4. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1080-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1080-9_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1082-3

  • Online ISBN: 978-1-4757-1080-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics