Skip to main content

The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions

  • Chapter

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 3))

Abstract

The basic starting point for calculating ab initiowave functions of molecules is generally the Hartree—Fock (HF) wave function, which in the simplest case involves two electrons (one with each spin) in each orbital Φi with the total wave function antisymmetrized in order to satisfy the Pauli principle

$$ a[({\phi _{1}}\alpha )({\phi _{1}}\beta )({\phi _{2}}\alpha )({\phi _{2}}\beta )...({\phi _{n}}\alpha )({\phi _{n}}\beta )] = a[({\phi _{1}}{\phi _{1}}{\phi _{2}}{\phi _{2}}...{\phi _{n}}{\phi _{n}}\alpha \beta \alpha \beta ...\alpha \beta )] $$
((1))

Here a is the antisymmetrizer or determinant operator* and α and β are the usual spin functions. In Eq. (1) as elsewhere, we arrange products of spatial functions and spin functions in order of increasing electron numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Goddard III and R. C. Ladner, A generalized orbital description of the reactions of small molecules, J. Am. Chem. Soc. 93, 6750–6756 (1971).

    Article  CAS  Google Scholar 

  2. R. C. Ladner and W. A. Goddard III, Improved quantum theory of many-electron systems. V. The spin-coupling and optimized GI method, J. Chem. Phys. 51, 1073–1087 (1969).

    Article  CAS  Google Scholar 

  3. W. J. Hunt, P. J. Hay, and W. A. Goddard III, Self-consistent procedures for generalized valence bond wave functions. Applications H3, BH, H2O, C2H6, and O2, J. Chem. Phys. 57, 738–748 (1972).

    Article  Google Scholar 

  4. C. C. J. Roothaan, Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys. 32, 179–185 (1960).

    Article  Google Scholar 

  5. F. W. Bobrowicz, Ph.D. thesis, California Institute of Technology (1974).

    Google Scholar 

  6. W. J. Hunt, W. A. Goddard III, and T. H. Dunning Jr., The incorporation of quadratic convergence into open-shell self-consistent field equations, Chem. Phys. Lett. 6, 147–151 (1970).

    Article  CAS  Google Scholar 

  7. W. A. Goddard III, Improved Quantum Ttheory of many-electron systems. II. The basic method, Phys. Rev. 157, 81–93 (1967).

    Article  CAS  Google Scholar 

  8. B. J. Moss and W. A. Goddard III, Configuration interaction studies on low-lying states of O2, J. Chem. Phys. 63, 3523–3531 (1975).

    Article  CAS  Google Scholar 

  9. T. Arai, Theorem on separability of electron pairs, J. Chem. Phys. 33, 95–98 (1960).

    Article  CAS  Google Scholar 

  10. P.-O. Löwdin, Note on the separability theorem for electron pairs, J. Chem. Phys. 35, 78–81 (1961).

    Article  Google Scholar 

  11. G. Levin and W. A. Goddard III, The generalized valence bond description of allyl radical, J. Am. Chem. Soc. 97, 1649–1656 (1975).

    Article  CAS  Google Scholar 

  12. G. Levin, Ph.D. thesis, California Institute of Technology, April 1974.

    Google Scholar 

  13. B. J. Moss, F. W. Bobrowicz, and W. A. Goddard III, The generalized valence bond description of O2, J. Chem. Phys. 63, 4632–4639 (1975).

    Article  CAS  Google Scholar 

  14. P.-O. Löwdin and H. Shull, Natural orbitals in the quantum theory of two-electron systems, Phys. Rev. 101, 1730–1739 (1956).

    Article  Google Scholar 

  15. J. M. Parks and R. G. Parr, Theory of separated electron pairs, J. Chem. Phys. 28, 335–345 (1958).

    Article  CAS  Google Scholar 

  16. D. M. Silver, E. L. Mehler, and K. Ruedenberg, Electron correlation and separated pair approximation in diatomic molecules. I. Theory, J. Chem Phys. 52, 1174–1180 (1970).

    Article  CAS  Google Scholar 

  17. C. C. J. Roothaan, New developments in molecular orbital theory, Rev. Mod. Phys. 23, 69–89 (1951).

    Article  CAS  Google Scholar 

  18. I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvalues of very large symmetric matrices, J. Comput. Phys., 11 90–108 (1973).

    Article  Google Scholar 

  19. R. C. Raffenetti, Preprocessing two-electron integrals for efficient utilization in many-electron self-consistent field calculations, Chem. Phys. Lett. 20, 335–338 (1973).

    Article  CAS  Google Scholar 

  20. R. K. Nesbet, Configuration interaction in orbital systems, Proc. Roy. Soc. London, Ser. A 230, 312–321 (1955).

    Article  CAS  Google Scholar 

  21. F. W. Birss and S. Fraga, Self-consistent-field theory. I. General Treatment, J. Chem. Phys. 38, 2552–2557 (1963).

    Article  CAS  Google Scholar 

  22. G. Das, Extended Hartree-Fock ground-state wavefunctions for the lithium molecule, J. Chem. Phys. 46, 1568–1579 (1967).

    Article  CAS  Google Scholar 

  23. B. Levy, Best choice for the coupling operators in the open-shell and multiconfiguration SCF methods, J. Chem. Phys. 48, 1994–1996 (1968).

    Article  CAS  Google Scholar 

  24. J. Hinze and C. C. J. Roothaan, Multiconfiguration self-consistent field theory, Prog. Theor. Phys. (Kyoto) Supp. 40, 37–51 (1967).

    Article  Google Scholar 

  25. B. Levy, Best choice for the coupling operators in the open-shell and multiconfiguration SCF methods, J. Chem. Phys. 48, 1994–1996 (1968).

    Article  CAS  Google Scholar 

  26. S. Huzinaga, Coupling operator method in the SCF theory, J. Chem. Phys. 51, 3971–3975 (1969).

    Article  CAS  Google Scholar 

  27. W. J. Hunt, T. H. Dunning Jr., and W. A. Goddard III, The orthogonality constrained basis set expansion method for treating off-diagonal Lagrange multipliers in calculations of electronic wave functions, Chem. Phys. Lett. 3, 606–610 (1969).

    Article  CAS  Google Scholar 

  28. S. Huzinaga, Analytical methods in Hartree-Fock self-consistent field theory, Phys. Rev., 122 131–138 (1961).

    Article  Google Scholar 

  29. D. Peters, Simple open-shell SCF molecular orbital computations, J. Chem. Phys., 57 4351–4353 (1972).

    Article  CAS  Google Scholar 

  30. W. A. Goddard III, T. H. Dunning Jr., and W. J. Hunt, The proper treatment of off-diagonal Lagrange multipliers and coupling operators in self-consistent field equations, Chem. Phys. Lett., 4 231–234 (1969).

    Article  CAS  Google Scholar 

  31. J. P. Dahl, H. Johansen, D. R. Truax, and T. Ziegler, On the derivation of necessary conditions on Hartree-Fock orbitals, Chem. Phys. Lett., 6 64–66 (1970).

    Article  CAS  Google Scholar 

  32. R. Albat and N. Gruen, Examples of known SCF procedures which do not satisfy all necessary conditions for the energy to be stationary, Chem. Phys. Lett., 18 572–573 (1973).

    Article  CAS  Google Scholar 

  33. K. Hirao and H. Nakatsuji, General SCF operator satisfying correct variational condition, J. Chem. Phys., 59 1457–1462 (1973).

    Article  CAS  Google Scholar 

  34. E. R. Davidson, Spin-restricted open-shell self-consistent-field theory, Chem. Phys. Lett., 21 565–567 (1973).

    Article  CAS  Google Scholar 

  35. M. H. Wood and A. Veillard, On convergence guarantees for the multiconfiguration selfconditions for the energy to be stationary, Chem. Phys. Lett., 18 572–573 (1973).

    Article  Google Scholar 

  36. M. Rossi, Variational procedure for open-shell LCAO multideterminant wavefunctions. An approach to the excited-state problem, J. Chem. Phys., 46 989–996 (1967).

    Article  CAS  Google Scholar 

  37. N. G. Mukherjee, A variational procedure for the optimization of multi-configuration self-consistent field (MCSCF) orbitals, Chem. Phys. Lett., 24 441–446 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bobrowicz, F.W., Goddard, W.A. (1977). The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions. In: Schaefer, H.F. (eds) Methods of Electronic Structure Theory. Modern Theoretical Chemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0887-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0887-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0889-9

  • Online ISBN: 978-1-4757-0887-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics