Skip to main content

Magnetic Properties of Molecular Metal Clusters

  • Chapter
Physics and Chemistry of Small Clusters

Abstract

Relatively little is known of the physical properties of molecular metal cluster compounds. Magnetic susceptibility and electron paramagnetic resonance (EPR) experiments have shown that osmium carbonyl clusters of sufficiently high nuclearity have unusual “metametallic” magnetic properties. These represent a molecular analogue of the types of magnetism observed in small particles and colloids of several metals, but are beyond the ability of current theories to explain quantitatively. Results of low-temperature EPR spectroscopic measurements on several molecular cluster compounds such as H2Os 10C(C0)24 and 0s S2(CO)23 are presented, and parallels between their properties and those of non-molecular metal clusters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. Chini, J. Organomet. Chem. 200:37 (1980).

    Article  Google Scholar 

  2. G. Schmid, Structure and Bonding (Berlin) 62:51 (1985).

    Article  Google Scholar 

  3. J. Lewis and B.F.G. Johnson, Pure and Applied Chem. 54:97 (1982).

    Article  Google Scholar 

  4. B.F.G. Johnson, ed. “Transition Metal Clusters”, Wiley, New York (1980).

    Google Scholar 

  5. D.M.P. Mingos, Chem. Soc. Rev. 15:31 (1986).

    Article  Google Scholar 

  6. E.L. Muetterties and R.M. Wexler, Surv. Prog. Chem. 10:61 (1983).

    Article  Google Scholar 

  7. R. Kubo, J. Phys. Soc. Japan 17:975 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Kawabata, J. Phys. Soc. Japan 29:902 (1970).

    Article  ADS  Google Scholar 

  9. R.F. Marzke, Catal. Rev. Sci. Eng. 19:43 (1979).

    Article  Google Scholar 

  10. D.C. Johnson, R.E. Benfield, P.P. Edwards, W.J.H. Nelson and M.D. Vargas, Nature (London) 314:231 (1985).

    Article  ADS  Google Scholar 

  11. C.J. Ballhausen, “Introduction to Ligand Field Theory”, McGraw Hill, New York (1962), p.147.

    MATH  Google Scholar 

  12. R.E. Benfield, P.P. Edwards and A.M. Stacy, J. Chem. Soc. Chem. Commun. 525 (1982).

    Google Scholar 

  13. B.J. Pronk, H.B. Brom, L.J. de Jongh, G. Longoni and A. Ceriotti, Solid State Commun. 59:349 (1986).

    Article  ADS  Google Scholar 

  14. B.K. Teo, F.J. DiSalvo, J.V. Waszczak, G. Longoni and A. Ceriotti, Inorg. Chem. 25:2262 (1986).

    Article  Google Scholar 

  15. L.E. Orgel, “Introduction to Transition Metal Chemistry” 2nd edn., Methuen, London (1966), Chapter 3.

    Google Scholar 

  16. R.E. Benfield, J. Phys. Chem. in the press (1986).

    Google Scholar 

  17. B.F.G. Johnson and R.E. Benfield, Ref.4, Chapter 7.

    Google Scholar 

  18. F.J. Dyson, Phys. Rev. 98:349 (1955).

    Article  ADS  MATH  Google Scholar 

  19. P.R. Elliston, J. Phys. C7:425 (1974).

    ADS  Google Scholar 

  20. J.P. Attard, B.F.G. Johnson, J. Lewis, J.M. Mace, M. McPartlin and A. Sironi, J. Chem. Soc. Chem. Commun. 595 (1984).

    Google Scholar 

  21. R.E. Benfield and B.F.G. Johnson, J. Chem. Soc. Dalton 1743 (1980).

    Google Scholar 

  22. R.F. Marzke, W.S. Glaunsinger and M. Bayard, Solid State Commun. 18:1025 (1976).

    Article  ADS  Google Scholar 

  23. J-L. Millet and J-P. Borel, Surface Science 106:403 (1981).

    Article  ADS  Google Scholar 

  24. R. Kubo, A. Kawabata and S. Kobayashi, Ann. Rev. Mat. Sci. 14:49 (1984).

    Article  ADS  Google Scholar 

  25. R. Denton, B. Muhlschlegel and D.J. Scalapino, Phys. Rev. B7:3589 (1973).

    ADS  Google Scholar 

  26. J. Sone, J. Phys. Soc. Japan 42:1457 (1977).

    Article  ADS  Google Scholar 

  27. A.E. Hughes and S.C. Jain, Adv. Phys. 28:717 (1979).

    Article  ADS  Google Scholar 

  28. J-P. Borel and J-L. Millet, J. de Physique 38:C2–115 (1977).

    Google Scholar 

  29. S. Sako and K. Kimura, Surface Science 156:511 (1985).

    Article  ADS  Google Scholar 

  30. S.C. Jain, G.D. Sootha and R.K. Jain, J. Phys. C1:1220 (1968).

    ADS  Google Scholar 

  31. S.C. Jain, S.K. Agarwal, G.D. Sootha and R. Chander, J. Phys. C3:1343 (1970).

    ADS  Google Scholar 

  32. D.A. Gordon, R.F. Marzke and W.S. Glaunsinger, J. de Physique 38:C2–87 (1977).

    Google Scholar 

  33. G.A. Ozin, J. Amer. Chem. Soc. 102:3301 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Benfield, R.E. (1987). Magnetic Properties of Molecular Metal Clusters. In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0357-3_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0359-7

  • Online ISBN: 978-1-4757-0357-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics