Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 174))

Abstract

There is an increasing awareness of the importance of essential trace metals, particularly zinc and copper, in normal cell growth and development [1]. Central to this theme has been the postulated direct involvement of zinc in the control of gene expression [2]. A number of zinc metalloproteins have been reported to be involved in replication and transcription, including RNA and DNA polymerases [3]. Thus, the question arises as to the mechanism by which the activity of these enzymes might be directly regulated by cytosolic trace metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. M. Bolze, R. D. Reeves, F. E. Lindbeck and J. M. Eiders, Influence of zinc on growth, somatomedin, and glycosaminoglycan metabolism in rats, Am. J. Physiol. 252:E21 (1987).

    PubMed  CAS  Google Scholar 

  2. B. L. Vallee, A role for zinc in gene expression, J. Inner. Metab. Dis. 6:31 (1983).

    Article  CAS  Google Scholar 

  3. D. P. Giedroc, K. M. Keating, C. T. Martin, K. R. Williams and J. E. Coleman, Zinc metalloproteins involved in replication and transcription, J. Inorganic Biochem. 28:155 (1986).

    Article  CAS  Google Scholar 

  4. J. S. Hanas, D. J. Hazuda, D. R. Bogenhagen, F. Y.-H. Wu and C.-W. Wu, Xenopus transcription factor A requires a zinc for binding to the 5s RNA gene, Biol. Chem. 258:14120 (1983).

    CAS  Google Scholar 

  5. A. Klug and D. Rhodes, “Zinc fingers”: a novel protein motif for nucleic acid recognition,Trends Biol. Sci. 12:464 (1987).

    Article  CAS  Google Scholar 

  6. J. T. Kadonaga, K. R. Carner, F. R. Masiarz and R. Tjian, Isolation of cDNA encoding transcription factor Sp 1 and functional analysis of the DNA binding domain, Cell 51:1079 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. T. A. Hartshorne, H. Blumberg and E. T. Young, Sequence homology of the yeast regulatory protein ADR1 with Xenopus transcription factor TFIIIA, Nature 320:283 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. U. B. Rosenberg, C. Schroder, A. Preiss, A. Kielin, S. Cote, I. Riede and H. Jackel, Structural homology of the product of the Drosophila Krupple gene with Xenopus transcription factor IIIA, Nature 319:336 (1986).

    Article  CAS  Google Scholar 

  9. D. Tautz, R. Lehmann, H. Schnurch, R. Schuh, E. Scifert, A. Kienlin, K. Jones and H. Jackel, Finger protein of novel structure encoded by Hunchback, a second member of the gap class of Drosophila segmentation genes, Nature 327:383 (1987).

    Article  CAS  Google Scholar 

  10. A. Vincent, H. V. Colot and M. Rosbash, Sequence and structure of the Serendipity locus of Drosophila melanogaster, J. Mol. Biol. 186:149 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. K. Yutaka and J. H. R. Kagi, Metallothionein, Trends Biochem. Sci. 3: 90 (1978).

    Article  Google Scholar 

  12. D. H. Hamer, Metallothionein, Ann. Rev. Biochem. 55:913 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. J. H. R. Kagi, M. Vasak, K. Lerch, D. E. O. Gilg, P. Hunziker, W. R. Bernhard and M. Good, Structure of mammalian metallothionein, Environ. Health. Perspect. 54:93 (1984).

    PubMed  CAS  Google Scholar 

  14. M. Karin, M. Imagawa, R. J. Imbra, R. Chiu, A. Heguy, A. Haslinger, T. Cooke, S. Satabhama, C. Jonat and P. Herrlich, Hormonal and environmental control of metallothionein gene expression, in: “Transcriptional Control Mechanisms,” 1D. Granner, G. Rosenfeld, S. Chang, eds., Alan R. Liss, New York (1987).

    Google Scholar 

  15. P. F. Searle, Metallothionein gene regulation, Biochem. Soc. Trans. 15:584 (1987).

    PubMed  CAS  Google Scholar 

  16. K. E. Mayo and R. D. Palmiter, Glucocorticoid regulation of the mouse metallothionein 1 gene is selectively lost following amplification of the gene, J. Biol. Chem. 257:306 (1982).

    Google Scholar 

  17. A. O. Udom and F. O. Brady, Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein, Biochem. J. 187:329 (1980).

    PubMed  CAS  Google Scholar 

  18. D. H. Hamer, Metallothionein gene regulation in Menkes’ Syndrome, Arch. Dermatol. 123:1384a (1987).

    Article  PubMed  CAS  Google Scholar 

  19. G. W. Evans, R. S. Dubois and K. M. Hambridge, Wilson’s disease: identification of an abnormal copper-binding protein, Science 181:1175 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. G. K. Andrews, E. D. Adamson and L. Gedamu, The ontogeny of expression of murine metallothionein: comparison with the α-fetogene, Dev. Biol. 103:294 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. J. F. B. Mercer and A. Grimes, Variation in the amounts of hepatic copper, zinc and metallothionein mRNA during development of the rat, Biochem. J. 238:23 (1986).

    PubMed  CAS  Google Scholar 

  22. M. Nemer, E. C. Travaglini, E. Rondinelli and J. D’Alonzo, Developmental regulation, induction and embryonic tissue specificity of sea urchin metallothionein gene expression, Dev. Biol. 102:471 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. A. Thall and R. Acey, Cadmium binding proteins in developing Artemia salina, Fed. Proc. 44:1462 (1985).

    Google Scholar 

  24. Y. H. Nakanishi, T. Iwasaki, T. Okigaki and H. Kato, Cytological studies of Artemia salina. Embryonic development without cell multiplication after the blastula in encysted dry eggs, Annot. Zool. Japon. 35:223 (1962).

    Google Scholar 

  25. J. C. Bagshaw and R. Acey, Stage-specific gene expression in Artemia in: “Biochemistry of Artemia Development,” J. C. Bagshaw and A. H. Warner, eds., University Microfilms International, Ann Arbor (1979).

    Google Scholar 

  26. O. H. Lowry, N. J. Rosebrough, L. A. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265 (1951).

    PubMed  CAS  Google Scholar 

  27. D. L. Eaton and B. F. Toal, Evaluation of the Cd/Hemoglobin affinity assay for the rapid determination of metallothionein in biological tissues, Toxicol. Appl. Pharmacol. 66:134 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. K. Suzuki, Y. Ebihara, H. Akitomi, M. Nishikawa and R. Kawamura, Change in ratio of the two hepatic isometallothioneins with develoment from prenatal to neonatal rats, Comp. Biochem. Physiol. 76C: 33 (1983).

    CAS  Google Scholar 

  29. D. G. Wilkerson and M. Nemer, Metallothionein genes MTa and MTb expressed under distinct quantitative and tissue specific regulation in sea urchin embryos, Mol. Cellular Biol. 7:48 (1987).

    Google Scholar 

  30. J. Pande, M. Vasak and J. H. R. Kagi, Interaction of lysine residues with the metal thiolate Clusters in metallothionein, Biochemistry 24:6717 (1985).

    Article  PubMed  CAS  Google Scholar 

  31. R. Acey, Induction of a zinc binding protein during the early embryonic development of the brine shrimp Artemia salina, J. Cell. Biochem. Supplement D:354 (1988).

    Google Scholar 

  32. J. C. Steffens, D. F. Hunt and B. G. Williams, Accumulation of nonprotein metal binding Polypeptides (∂-glutamyl-cysteinyl) n-glycine in selected cadmium-resistant tomato cells, J. Biol. Chem. 261:13879 (1986).

    PubMed  CAS  Google Scholar 

  33. H. Ohtake, T. Suyemitsu and M. Koga, Sea urchin (Anthocidaris crassispina) egg zinc-binding protein, Biochem. J. 211:109 (1983).

    PubMed  CAS  Google Scholar 

  34. A. Cano, J. Crucus, I. Estepa, M. E. Gallego, M. A. G. Sillero, C. F. Heredia, P. Liorente, A. Olalla, C. Osuna, A. Pestana, J. Renart, A. Ruiz, L. Sastre, J. Sebastian and A. Sillero, Developmental changes of enzyme levels during Artemia salina differentiation, in: “Biochemistry of Artemia Development,” J. C. Bagshaw and A. H. Warner, eds., University Microfilms International, Ann Arbor (1979).

    Google Scholar 

  35. D. K. McClean and A. H. Warner, Aspects of nucleic acid metabolism during development of the brine shrimp Artemia salina, Develop. Biol. 24:88 (1971).

    Article  PubMed  CAS  Google Scholar 

  36. A. J. Kraker and D. H. Petering, Tumor-host zinc metabolism: the central role of metallothionein, Biol. Trace Element Res. 5:363 (1983).

    Article  CAS  Google Scholar 

  37. C. G. Vallejo, F. de Luchi, J. Laynez and R. Marco, The role of cytochrome oxidase in the resumption of the development of Artemia dormant cysts, in: “The Brine Shrimp Artemia,” G. Persoone, P. Sorgeloos, O. Roels and E. Jaspers, eds., Universa Press, Wettren (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Acey, R.A., Yoshida, B.N., Edep, M.E. (1989). Metalloproteins in Developing Artemia . In: Warner, A.H., MacRae, T.H., Bagshaw, J.C. (eds) Cell and Molecular Biology of Artemia Development. NATO ASI Series, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0004-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0004-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0006-0

  • Online ISBN: 978-1-4757-0004-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics