Skip to main content

Monte Carlo Models of Spontaneous Insertion of Peptides into Lipid Membranes

  • Chapter
Biological Membranes

Abstract

The export of proteins from one compartment to another requires that they be transported across cellular membranes. In addition, membrane proteins must somehow insert into the lipid bilayer after they have been synthesized. Because of their biological importance, the problems of protein insertion into membranes as well as the mechanism(s) of transport across membranes have been extensively studied (Singer, 1990). Experimental data strongly suggest that in vivo most large membrane proteins do not spontaneously insert into membranes (Singer, 1990). Rather, a complex cellular machinery is used. While the basic elements of this machinery are known for many systems, the mechanism and the source of the translocation energy are still unclear (Gierash, 1989; Rapoport, 1992; 1991). On the other hand, when the translocation machinery is blocked or absent, many in vitro experiments provide evidence that some short proteins can insert into phospholipid vesicles (Maduke and Roise, 1993) or into membranes (Wolfe et al, 1985). These experimental results suggest that long and short proteins may translocate by different mechanisms in the cell (von Heijne, 1994) or that the translocation machinery is used to catalyze what is fundamentally a spontaneous insertion process (Jacobs and White, 1989); this may be particularly true for the case of long, amphiphilic sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994): Molecular Biology of the Cell. New York: Garland

    Google Scholar 

  • Baumgärtner A, Skolnick J (1994a): Spontaneous translocation of a polymer across a curved membrane. Phys Rev Lett 74:2142–45

    Article  Google Scholar 

  • Baumgärtner A, Skolnick J (1994b): Polymer electrophoresis across a model membrane. J Phys Chem 98:10655–58

    Article  Google Scholar 

  • Bechinger B, Kim Y, Chirlian LE, Gessel J, Neumann JM, Montai M, Tomich J, Zasloff M, Opella S J (1991): Orientations of amphiphilic helical peptides in membrane bilayers determined by solid-sate NMR spectroscopy. J Biomol NMR 1:167–73

    Article  PubMed  CAS  Google Scholar 

  • Binder K (1984): Applications of the Monte Carlo Method in Statistical Physics. Heidelberg: Springer-Verlag

    Book  Google Scholar 

  • Clark BA, Gray DM (1989): A CD determination of the a-helix contents of the coat proteins of four filamentous bacteriophages: fd, IKe, Pfl and Pf3. Biopolymers 28:1861–73

    Article  Google Scholar 

  • Engelman DM, Steitz TA (1991): The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis. Cell 23:411–22

    Article  Google Scholar 

  • Gierash LM (1989): Signal sequences. Biochemistry 28:923–30

    Article  Google Scholar 

  • Godzik A, Kolinski A, Skolnick J (1993): Lattice representations of globular proteins: How good are they? J Comp Chem 14:1194–1202

    Article  CAS  Google Scholar 

  • Gregoret LM, Cohen FE (1990): Novel method for the rapid evaluation of packing in protein structures.J Mol Biol 211:959–74

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RE, White SH (1989): The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28:3421–37

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RE, White SH (1987): Lipid bilayer perturbations induced by simple hydrophobic peptides. Biochemistry 26:6127–34

    Article  PubMed  CAS  Google Scholar 

  • Jahnig F (1983): Thermodynamics and kinetics of protein incorporation into membranes. Proc Natl Acad Sci USA 80:3691–95

    Article  PubMed  CAS  Google Scholar 

  • Kolinski A, Skolnick J (1994): Monte Carlo simulations of protein folding. Lattice model and interaction scheme. Proteins 18:338–52

    Article  PubMed  CAS  Google Scholar 

  • Lesser GJ, Lee RH, Zehfus MH, Rose GD (1987): Hydrophobic interactions in proteins. Protein Engin 14:175–9

    Google Scholar 

  • Maduke M, Roise D (1993): Import of mitochondrial presequence into protein free phospholipid vesicles. Science 260:364–367

    Article  PubMed  CAS  Google Scholar 

  • Milik M, Skolnick J (1993): Insertion of peptide chains into lipid membranes: An off-lattice Monte Carlo Dynamics model. Proteins 15:10–25

    Article  PubMed  CAS  Google Scholar 

  • Milik M, Skolnick J (1992): Spontaneous insertion of peptide chains into membranes: A Monte Carlo model. Proc Natl Acad Sci USA 89:9391–95

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Wiseman RL, Konigsberg W, Marvin DA (1975): Primary structure of side chain interactions of Pfl filamentous bacterial virus coat protein. Nature 253:68–71

    Article  PubMed  CAS  Google Scholar 

  • Rapoport TA (1992): Transport of proteins across the endoplasmic reticulum membrane. Science 28:931–36

    Article  Google Scholar 

  • Rapoport TA (1991): Protein transport across the endoplasmic reticulum membrane: Facts, models, mysteries. FASEB J 5:2792–98

    PubMed  CAS  Google Scholar 

  • Roseman MA (1988): Hydrophilicity of polar amino acid side chains is markedly reduced by flanking peptide bonds.J Mol Biol 200:513–22

    Article  PubMed  CAS  Google Scholar 

  • Shon J, Kim Y, Colnago LA, Opella SJ (1991): NMR studies of the structure and dynamics of membrane-bound bacteriophage Pfl coat protein. Science 252:1303–5

    Article  PubMed  CAS  Google Scholar 

  • Singer SJ (1990): The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol 6:247–96

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1994): Sec-independent protein insertion into the inner E. coli membrane. A phenomenon in search of an explanation. FEBS Lett 346:69–72

    Article  Google Scholar 

  • Wolfe PB, Rice M, Wickner W (1985): Effects of two sec genes on protein assembly into the plasma membrane of Escherichia coli. J Biol Chem 260:1836–41

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Skolnick, J., Milik, M. (1996). Monte Carlo Models of Spontaneous Insertion of Peptides into Lipid Membranes. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_16

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics