Skip to main content

Permeabilized Cyanobacteria: A Model System for Photosynthetic and Biotechnological Studies

  • Chapter
Techniques and New Developments in Photosynthesis Research

Part of the book series: NATO ASI Series ((NSSA,volume 168))

Abstract

The cyanobacteria (blue-green algae) is the largest group of phototrophs in the superkingdom Prokaryotae (Stanier and Cohen Bazire, 1977). Micropalaeontology places their origin in the middle of the Precambrian Eon, some 2.8–3.5 billion years ago, but it has not been able to decide yet whether filamentous or unicellular varieties appeared first (Schopf and Walter, 1982). Those archaeic cyanobacteria were the first photoautotrophs on our planet that were endowed with an oxygenic photosynthetic machine, and so they are credited with the enrichment of Earth’s atmosphere in oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armond, P. A. and Staehelin, L. A., 1979, Lateral and vertical displacements of integral membrane proteins during lipid phase transition in Anacystis nidulans, Proceed. Natl. Acad. Sci. US., 76:1901.

    Article  CAS  Google Scholar 

  • Barber, J., 1980, Membrane surface charges and potentials in relation to photosynthesis, Biochim. Biophys. Acta, 594: 523.

    Google Scholar 

  • Barber, J., 1982, Influence of surface charges on thylakoid structure and function, Ann. Rev. Plant Physiol., 33:261.

    Article  CAS  Google Scholar 

  • Barbotin, J. N., Cocquempot, M. F., Larreta-Garde, V., Thomasset, B., Gellf, G., Clement-Metral, J. D., and Thomas, D., 1987, Meth. Enzymol., 135: 454.

    Article  CAS  Google Scholar 

  • Barbotin, J. N., and Thomasset, B., 1980, Immobilized organelles and whole cells into protein foam structures. Scanning and transmission electron microscopy observations, Biochimie, 62: 359.

    Article  PubMed  CAS  Google Scholar 

  • Biggins, J., 1967a, Preparation of metabolically active protoplasts from the blue-green alga Phormidium luridum, Plant Physiol., 42: 1442.

    Article  CAS  Google Scholar 

  • Biggins, J., 1967b, Photosynthetic reactions by lysed protoplasts and particle preparations from the blue-green alga Phormidium luridum, Plant Physiol, 42: 1447.

    Article  CAS  Google Scholar 

  • Binder, A., Tel-Or, E. and Avron, M., 1976, Photosynthetic activities of membrane preparations of the blue-green alga Phormidium luridum, Eur. J. Biochem. 67: 187.

    Article  PubMed  CAS  Google Scholar 

  • Brand, J. J., 1977, Spectral changes in Anacystis nidulans induced by chilling, Plant Physiol., 59: 970.

    Article  PubMed  CAS  Google Scholar 

  • Braun, V., Rehn, K., and Wolff, H., 1970, Supramolecular structure of the rigid wall of Salmonella, Serratia, Proteus, and Pseudomonas fluorescens: number of lipoprotein molecules in a membrane layer, Biochemistry, 9: 5041.

    Article  PubMed  CAS  Google Scholar 

  • Chou, Lil S., and Barber, J., 1980, Salt dependent changes of 9-aminoacri-dine fluorescence as a measure of charge densities of membrane surfaces. J. Biochem. Biophys. Methods, 3: 173.

    Article  Google Scholar 

  • Collins, K. D., and Washabaugh, M. W., 1985, The Hofmeister effect and the behavior of water ate interfaces, Quart. Rev. Biophysics, 18: 323.

    Article  CAS  Google Scholar 

  • Crespi, H. L., Mandeville, S. E., and Katz, J. J., 1962, The action of lysozyme on several blue-green algae, Biochem. Biophys. Res. Commun., 9: 569.

    Article  PubMed  CAS  Google Scholar 

  • Drews, G., and Liieckesser, J., 1974, Function, structure and composition of cell walls and external layers, in: “The Biology of Cyanobacteria,” N. G. Carr and B. A. Whitton, eds., Blackwell, Oxford.

    Google Scholar 

  • Erokhina, L., Shubin, L., Klimov, V., and Proskuryakov, I., 1982, Reversible photoinduced changes of absorption and fluorescence yield of phycobilisomes related to the photoreduction of allophycocya-nin B, in: “Photosynthetic Prokaryotes,” G. C. Papageorgiou and L. Packer, eds., Elsevier, New York.

    Google Scholar 

  • Flewelling, R. F., and Hubbel, W. L., 1986, Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles, Biophys. J., 49: 531.

    Article  PubMed  CAS  Google Scholar 

  • Forrest, H. S., Van Baalen, C., and Myers, J., 1957, Occurence of pteridines in a blue-green alga, Science, 125: 699.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, S., and Tanaka, A., 1982, Immobilized microbial cells, Ann. Rev. Microbiol. 36: 145.

    Article  CAS  Google Scholar 

  • Furtado, D., Williams, W. P., Brain, A. P. R. and Quinn, P., 1979, Phase separation in membranes of Anacystis nidulans grown at different temperatures, Biochim. Biophys. Acta, 555: 352.

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt, B. and Trebst, A., 1965, Photosynthetische Reaktionen in lyophilisierten Zellen des Blaualge Anacystis, Zeit. Naturforsch., 20b: 879.

    CAS  Google Scholar 

  • Gilleland, H. E., Stinnet, J. D. Jr., Roth, I. L. and Eagon, R. G., 1973, Freeze-etch study of Pseudomonas aeruginosa: localization within the cell wall of an ethylene diamine tetracetate extractable compound. J. Bacteriol., 113: 417.

    PubMed  Google Scholar 

  • Glazer, A. N., 1984, Phycobilisome: a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta, 768: 29.

    CAS  Google Scholar 

  • Glazer, A. N., and Bryant, D. A., 1975, Allophycocyanin B (max 671, 618 nm). A new cyanobacterial phycobiliprotein. Arch. Microbiol., 104: 11.

    Google Scholar 

  • Hatefi, Y., and Hanstein, W. G., 1969, Solubilization of particulate proteins and nonelectrolytes by chaotropic agents, Proceed. Natl. Acad. Sci. U. S., 62: 1129.

    Article  CAS  Google Scholar 

  • Jansz, E. R., and Maclean, F. I., 1973, The effect of cold shock on the blue-green alga Anacystis nidulans, Can. J. Microbiol., 19: 381.

    Article  PubMed  CAS  Google Scholar 

  • Kalosaka, K., 1987, Surface electric properties of photosynthetic membranes from cyanobacteria (cyanophytes), Ph. D. thesis, Univ. of Patras, Greece.

    Google Scholar 

  • Kalosaka, K. and Papageorgiou, G. C., 1984, Surface electric properties of thylakoid fragments isolated from vegetative and heterocystous cyanobacteria, in “Proceedings of the Vlth International Congress on Photosynthesis,” C. Sybesma, ed., Martinus Nijhoff/Dr W. Junk, The Hague.

    Google Scholar 

  • Kalosaka, K., Sotiropoulou, G. and Papageorgiou, G. C., 1985, Retardation of electron donation to photosystem I in aged cyanobacteria and its reversal by metal cations. Biochim. Biophys. Acta, 808: 273.

    Article  CAS  Google Scholar 

  • Lambert, G. R, and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria (blue-green algae), Biol. Rev., 56: 589.

    Article  CAS  Google Scholar 

  • McLaughlin, S., 1977, Electrostatic potentials at membrane solution interfaces, in “Current Topics in Membranes and Transport” Bronner, F., and Kleinzeller, A., eds., Academic Press, New York.

    Google Scholar 

  • Murata N., Troughton, J. H. and Fork, D. C., 1975, Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans, Plant Physiol., 56: 508.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. W., and Deamer, D. W., 1980, Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique, Proceed. Natl. Acad. Sci. US. 77: 2038.

    Article  CAS  Google Scholar 

  • Ono, T. A., and Murata, N., 1981a, Chilling susceptibility of the blue-green alga Anacystis nidulans: I. Effect of growth temperature. Plant Physiol., 67: 176.

    Article  CAS  Google Scholar 

  • Ono, T. A. and Murata, N., 1981b, Chilling susceptibility of the blue--green alga Anacystis nidulans. II. Stimulation of the passive permeability of the cytoplasmic membrane at chilling temperatures. Plant Physiol., 67: 182.

    Article  CAS  Google Scholar 

  • Ono, T. A. and Murata, N., 1981c, Chilling susceptibility of the blue--green alga Anacystis nidulans. III. Lipid phase of the cytoplasmic membrane, Plant Physiol., 69: 125.

    Article  Google Scholar 

  • Papageorgiou, G. C., 1977, Photosynthetic activity of diimidoester-modified cells, permeaplasts, and cell-free fragments of the blue--green alga Anacystis nidulans, Biochim. Biophys. Acta, 461: 379.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou, G. C., 1979, Molecular and functional aspects of immobilized chloroplast membranes, in “Photosynthesis in Relation to Model Systems”, Barber, J., ed., Elsevier, Amsterdam.

    Google Scholar 

  • Papageorgiou, G. C., 1980, Stabilization of chloroplast and subchloroplast particles, Meth. Enzymol., 69: 613.

    Article  CAS  Google Scholar 

  • Papageorgiou, G. C., 1987, Immobilized photosynthetic microorganisms. Photosynthetica, 21: 367.

    CAS  Google Scholar 

  • Papageorgiou, G. C., 1988a, Rapid permeabilization of Anacystis nidulans to electrolytes, Meth Enzymol, Vol 167 (in press).

    Google Scholar 

  • Papageorgiou, G. C., 1988b, Interactions of inorganic ions with oriented cyanobacterial thylakoids, in “water and Ions in Biological Systems,” P. Lauger, L. Packer, and V. Vasilescu, eds., Birkhauser Verlag, Basel.

    Google Scholar 

  • Papageorgiou, G. C., and Lagoyanni, T., 1983, Effects of chaotropic electrolytes on the structure and electronic excitation of glutarade-hyde and diimidoester-crosslinked phycobilisomes, Biochim. Biophys. Acta, 714: 323.

    Google Scholar 

  • Papageorgiou, G. C. and Lagoyanni, T., 1985, Photosynthetic properties of rapidly permeabilized cells of the cyanobacterium Anacystis nidulans. Biochim Biophys Acta, 807: 230.

    Article  CAS  Google Scholar 

  • Papageorgiou, G. C. and Lagoyanni, T., 1986, Immobilization of photosyn-thetically active cyanobacteria in glutaraldehyde-crosslinked albumin matrix, Appl. Microbiol. Biotechnol., 23: 417.

    Article  CAS  Google Scholar 

  • Papageorgiou, G. C., Kalosaka, K, Sotiropoulou, G., Barbotin, J. N., Thomasset, B., and Thomas, D., 1988, Entrapment of ion-permeable cyanobacteria (Anacystis nidulans) in calcium alginate, Appl. Microbiol. Biotechnol., in press.

    Google Scholar 

  • Papageorgiou, G. C. and Tzani, H., 1980, The action of lysozyme on gluta-raldehyde-treated cells of the cyanobacterium Phormidium luridum, J. Appl. Biochem., 2: 230.

    CAS  Google Scholar 

  • Philips, D. C., 1967, The hen egg-white lysozyme molecule. Proceed. Natl. Acad. Sci., 57: 484.

    Google Scholar 

  • Rao, K. K., and Hall, D. O., 1984, Photosynthetic production of fuels and chemicals in immobilized systems, Trends in Biochem. Sci. 2:1.

    Google Scholar 

  • Rao, V. S. K., Brand, J., and Myers, J., 1977, Cold-shock syndrome of Ana-cystis nidulans, Plant Physiol., 59: 965.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. J., DeRoo, C. S. and Yocum, C. F., 1982, Photosynthetic electron transfer in preparations of the cyanobacterium Spirulina platensis, Plant Physiol. 70, 154–161.

    Article  PubMed  CAS  Google Scholar 

  • Schöpf, J. W. and Walter, M. R. (1982) Origin and early evolution of cyanobacteria: the geological evidence, in “The Biology of Cyanobacteria,” N. G. Carr and B. A. Whitton, eds., Blackwell, Oxford.

    Google Scholar 

  • Schreiber, U., 1979, Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans. FEBS Letters, 107: 4.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, U., Rijgersberg, C. P., and Amesz, J., 1979, Temperature-dependent reversible changes in phycobilisome-thylakoid attachment, FEBS Letters, 104: 327

    Article  CAS  Google Scholar 

  • Sotiropoulou, G., 1987, Interactions of Ions with Oriented Cyanobacterial Thylakoids, Ph. D. thesis, University of Thessaloniki, Greece.

    Google Scholar 

  • Sotiropoulou, G., Lagoyanni, T., and Papageorgiou, G. C. (1984) Effects of Ca ions on light-induced electron transport activities of Anacystis nidulans permeaplasts and spheroplasts, in “Proceedings of the VIth International Congress on Photosynthesis,” C. Sybesma, ed., Martinus Nijhoff/Dr W. Junk, The Hague.

    Google Scholar 

  • Sotiropoulou, G., and Papageorgiou, G. C., 1985, Modulation of the Hill reaction rates by ions iteracting with the outer surface of cyanobacterial thylakoids, in “Ion Interactions in Energy Transfer Biomembranes”, Papageorgiou, G. C., Barber, J., and Papa, S, eds., Plenum Press, New York.

    Google Scholar 

  • Sotiropoulou, G. and Papageorgiou, G. C., 1986, Stimulation and inhibition of photosystem II electron transport in cyanobacteria by ions interacting with the cytoplasmic face of thylakoids. Photosynt. Res., 10: 445.

    Article  CAS  Google Scholar 

  • Spiller, H., and Boeger, P., 1980, Photosynthetically active algal preparations, Meth. Enzymol. 69: 105.

    Article  CAS  Google Scholar 

  • Stanier, G. (1982) Foreword, in “The Biology of Cyanobacteria,” Carr, N. G., and Whitton, B. A., eds., Blackwell, Oxford.

    Google Scholar 

  • Stanier, G., and Cohen-Bazire, G., 1977, Phototrophic prokaryotes: the cyanobacteria, Ann. Rev. Microbiol., 31: 225.

    Article  CAS  Google Scholar 

  • Ward, B. and Myers, J., 1972, Properties of permeaplasts of Anacystis, Plant Physiol., 50: 547.

    Article  PubMed  CAS  Google Scholar 

  • Williams, W. P., and Allen, J. F., 1987, State 1/State 2 changes in higher plants and algae, Photosynth. Res., 13: 19.

    Article  CAS  Google Scholar 

  • Witholt, B., Heerikhuizen, van H., and De Leij, L., 1976, How lysozyme penetrates through the bacterial outer membrane, Biochim. Biophys. Acta, 443: 534.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Papageorgiou, G.C. (1989). Permeabilized Cyanobacteria: A Model System for Photosynthetic and Biotechnological Studies. In: Barber, J., Malkin, R. (eds) Techniques and New Developments in Photosynthesis Research. NATO ASI Series, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8571-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8571-4_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8573-8

  • Online ISBN: 978-1-4684-8571-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics