Skip to main content

Pathways and Controls of the Carbon Cycle in Salt Marshes

  • Chapter
The Ecology and Management of Wetlands
  • 329 Accesses

Abstract

It is argued that intertidal wetlands are a necessary link in coastal food chains and that their protection is vital to the continued productivity of coastal marine fisheries (Teal, 1962; Teal and Teal, 1969; Odum, 1971; Gosselink, Odum and Pope, 1974). These arguments have apparently been persuasive among legislators. Several states, including South Carolina, have established a permitting process, through provisions in the Federal Coastal Zone Management Act designed to protect intertidal wetlands. Current legislation, however, fails to take into account the dynamic nature of intertidal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Blum, U., Seneca, E.D. and Stroud, L.M. (1978) Photosynthesis and respiration of Spartina and Juncus salt marshes in North Carolina: some models. Estuaries, 1, 228–38

    Article  Google Scholar 

  • Broome, S.W., Woodhouse, W.W. Jr and Seneca, E.D. (1975) The relationship of mineral nutrients to growth of Spartina alterniflora in North Carolina: II. The effects of N,P, and Fe fertilizers. Soil Sci. Soc. Am. Proc., 39, 301–7

    Google Scholar 

  • Brutsaert, W. (1982) Evaporation into the atmosphere. Reidel, Dordrecht, Holland, 299 pp.

    Book  Google Scholar 

  • Cavalieri, A.J. (1983) Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia, 57, 20–4

    Article  PubMed  Google Scholar 

  • Cavalieri, A.J. and Huang, A.H.C. (1979) Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. Am. J. Bot., 66, 307–12

    Google Scholar 

  • Cavalieri, A.J. and Huang, A.H.C. (1981) Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel. In response to NaCl and nitrogen in the marsh. Oecologia, 49, 224–8

    Google Scholar 

  • Dacey, J.W.H. and Howes, B.L. (1984) Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh. Science, 224, 487–9

    Article  CAS  PubMed  Google Scholar 

  • DeLaune, R.D., Smith, C.J. and Patrick, W.H. Jr (1983) Relationship of marsh elevation, redox potential and sulfide to Spartina alterniflora productivity. Soil Sci. Soc. Am. J., 47, 930–5

    Google Scholar 

  • Drake, B.G. and Gallagher, J.L. (1984) Osmotic potential and turgor maintenance in Spartina alterniflora Loisel. Oecologia, 62, 368–75

    Article  CAS  PubMed  Google Scholar 

  • Drake, B.G. and Read, M. (1981) Carbon dioxide assimilation, photosynthetic efficiency, and respiration of a Chesapeake Bay salt marsh. J. Ecol., 69, 405–23

    Article  CAS  Google Scholar 

  • Eleuterius, L.N. (1984) Autecology of the black needlebrush Juncus roemerianus. Gulf Res. Rep., 7, 339–50

    Google Scholar 

  • Eiser, W.C. and Kjerfve, B. (1986) Marsh topography and hypsometric characteristics of a South Carolina salt marsh basin. Estuarine Coastal Shelf Sci., 23, 595–605

    Article  Google Scholar 

  • Feijtel, T.C., DeLaune, R.D. and Patrick, W.H. (1985) Carbon flow in coastal Louisiana. Marine Ecol., 24, 255–60

    Article  CAS  Google Scholar 

  • Gallagher, J.L. (1975) Effect of an ammonium nitrate pulse on the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus. Am. J. Bot., 62, 644–8

    Google Scholar 

  • Gardner, L.R. (1973) The effect of hydrologic factors on the pore water chemistry of intertidal marsh sediments. Southeast Geol., 15, 17–28

    CAS  Google Scholar 

  • Gardner, L.R. and Bohn, M. (1980) Geomorphic and hydraulic evolution of tidal creeks on a subsiding beach ridge plain, North Inlet, SC. Marine Geol., 34, M91 - M97

    Article  Google Scholar 

  • Gardner, L.R., Sharma, P. and Moore, W.S. (1987) A regeneration model for the effect of bioturbation by fiddler crabs on 210 Pb profiles in salt marsh sediments. J. Environ. Radioact. 5, 25–36

    Google Scholar 

  • Giurgevich, J.R. and Dunn, E.L. (1979) Seasonal patterns of CO2 and water vapor exchange of the tall and short height forms of Spartina alterniflora in a Georgia salt marsh. Oecologia, 43, 139–56

    Article  CAS  PubMed  Google Scholar 

  • Giurgevich, J.R. and Dunn, E.L. (1982) Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity of Juncus roemerianus and Spartina alterniflora in a Georgia salt marsh. Oecologia, 52, 404–10

    Article  CAS  PubMed  Google Scholar 

  • Gosselink, J.G., Odum, E.P. and Pope, R.M. (1974) The value of the tidal marsh. Center for Wetland Resources, Louisiana State University, Baton Rouge, LSU-SG-74–03, 30 pp.

    Google Scholar 

  • Hackney, C. and de la Cruz, A. (1980) In situ decomposition of roots and rhizomes of two tidal marsh plants. Ecology, 61, 226–31

    Article  Google Scholar 

  • Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D. and Russell, G. (1981) Climate impact of increasing atmospheric carbon dioxide. Science, 213, 957–66

    Article  CAS  PubMed  Google Scholar 

  • Hicks, S.D. and Crosby, J.E. (1974) Trends and variability of yearly mean sea level, 1893–1972. NOAA Technical Memorandum, N05 13, COM-74–11012, Rochville, MD. 16 pp.

    Google Scholar 

  • Houghton, R.A. and Woodwell, G.M. (1980) The Flax Pond ecosystem study: exchanges of CO2 between a salt marsh and the atmosphere. Ecology, 6, 1434–45

    Article  Google Scholar 

  • Howes, B.L., Howarth, R.W., Teal, J.M. and Valiela, I. (1981) Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production. Limnol. Oceanogr., 26, 350–60

    Google Scholar 

  • Ingold, A. and Havill, D.C. (1985) Some effects of sulphide in vitro on selected enzymes, oxygen uptake and ion-uptake in four salt marsh plant species. Comp. Physiol. Ecol. 10, 1–6

    Google Scholar 

  • Jaworski, A.Z. and Tedrow, J.C.F. (1985) Pedologic properties of New Jersey tidal marshes. Soil Sci., 139, 21–9

    Article  Google Scholar 

  • Jones, R.H. and Gresham, C.A. (1985) Analysis of composition, environmental gradients, and structure in the coastal plain lowland forests of South Carolina. Castanea, 50, 207–27

    Google Scholar 

  • King, G.M., Klug, M.J., Wiegert, R.G. and Chalmers, A.G. (1982) Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh. Science, 218, 61–63

    Article  CAS  PubMed  Google Scholar 

  • Kjerfve, B., Greer, J.E. and Grout, R.L. (1978) Low-frequency response of estuarine sea level to non-local forcing. In M.L. Wiley (ed.), Estuarine interactions. Academic Press, New York, pp. 497–513

    Chapter  Google Scholar 

  • Linthurst, R.A. (1980a) An evaluation of aeration, nitrogen, pH and salinity as factors affecting Spartina alterniflora growth: A summary. In V.S. Kennedy (ed.), Estuarine perspectives. Academic Press, New York, pp. 235–47

    Chapter  Google Scholar 

  • Linthurst, R.A. (1980b) A growth comparison of Spartina alterniflora Loisel. ecophenes under aerobic and anaerobic conditions. Am. J. Bot., 67, 883–7

    Google Scholar 

  • Linthurst, R.A. and Seneca, E.D. (1980) The effects of standing water and drainage potential on the Spartina alterniflorasubstrate complex in a North Carolina salt marsh. Estuarine Coastal Marine Sci., 2, 41–52

    Article  Google Scholar 

  • Mendelssohn, I.A., McKee, K.L. and Patrick, W.H. (1981) Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science, 214, 439–41

    Article  CAS  PubMed  Google Scholar 

  • Mendelssohn, I.A. and Seneca, E.D. (1980) The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina. Estuarine Coastal Marine Sci., 2, 27–40

    Article  Google Scholar 

  • Mercer, J.J. (1978) West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature, 271, 321–5

    Article  Google Scholar 

  • Morris, J.T. (1982) A model of growth responses by Spartina alterniflora to nitrogen limitation. J. Ecol., 70, 25–42

    Article  Google Scholar 

  • Morris, J.T. and Dacey, J.W.H. (1984) Effects of 02 on ammonium uptake and root respiration by Spartina alterniflora. Am. J. Bot., 71, 979–85

    Google Scholar 

  • Morris, J.T., Houghton, R.A. and Botkin, D.B. (1984) Theoretical limits of belowground production by Spartina alterniflora: an analysis through modelling. Ecol. Modelling, 26, 155–75

    Google Scholar 

  • Morris, J.T. and Whiting, G.J. (1985) Gas advection in sediments of a South Carolina salt marsh. Marine Ecol. Prog. Ser., 27, 187–94

    Google Scholar 

  • Morris, J.T. and Whiting, G.J. (1986) Emission of gaseous CO2 from salt marsh sediments and its relation to other carbon losses. Estuaries, 9, 9–19

    Article  CAS  Google Scholar 

  • Newell, S.Y., Fallon, R.D., Cal Rodriguez, R.M. and Groene, L.C. (1985) Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt marsh plants. Oecologia, 68, 73–9

    Article  CAS  PubMed  Google Scholar 

  • Odum, E.P. (1971) Fundamentals of ecology. Saunders, Philadelphia, 574 pp.

    Google Scholar 

  • Patrick, W.H. and DeLaune, R.D. (1976) Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuarine Coastal Marine Sci., 4, 59–64

    Google Scholar 

  • Pearcy, R.W. and Ustin, S.L. (1984) Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia, 62, 68–73

    Article  PubMed  Google Scholar 

  • Phleger, C.F. (1971) Effect of salinity on growth of a salt marsh grass. Ecology, 52, 908–11

    Article  CAS  Google Scholar 

  • Redfield, A.C. and Rubin, M. (1962) The age of salt marsh peat and its relation to recent changes in sea level at Barnstable Massachusetts. Proc. Nat. Acad. Sci., 48, 1728–34

    Google Scholar 

  • Shea, M.L. (1977) Photosynthesis and photorespiration in relation to the phenotypic forms of Spartina alterniflora. PhD Thesis, Yale University, 64 pp.

    Google Scholar 

  • Silander, J.A. (1979) Microevolution and clone structure in Spartina patens. Science, 203, 658–60

    Article  CAS  PubMed  Google Scholar 

  • Silander, J.A. and Antonovics, J. (1979) The genetic basis of the ecological amplitude of Spartina patens. I. Morphometric and physiological traits. Evolution, 33, 1114–27

    Google Scholar 

  • Smart, R.M. and Barko, J.W. (1978) Influence of sediment, salinity and nutrient on the physiological ecology of selected salt marsh plants. Estuarine Coastal Marine Sci., 6, 1–9

    Article  Google Scholar 

  • Smith, C.J., DeLaune, R.D. and Patrick, W.H. (1983) Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuarine, Coastal Shelf Sci., 17, 21–9

    Google Scholar 

  • Sullivan, M.J. and Daiber, F.C. (1974) Response in production of cord grass, Spartina alterniflora, to inorganic nitrogen and phosphorus fertilizer. Chesapeake Sci., 15, 121–3

    Article  Google Scholar 

  • Teal, J.M. (1962) Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43, 614–24

    Article  Google Scholar 

  • Teal, J. and Teal, M. (1969) Life and death of a salt marsh. Ballantine, New York, 274 pp.

    Google Scholar 

  • Valiela, I. and Teal, J.M. (1974) Nutrient limitation in salt marsh vegetation. In R.J. Reimold and W.H. Queen (eds), Ecology of halophytes. Academic Press, New York, pp. 547–63

    Chapter  Google Scholar 

  • Valiela, I., Wilson, J., Buchsbaum, R., Rietsma, C., Bryant, D., Foreman, K. and Teal, J. (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. Marine Sci., 35, 261–9

    Google Scholar 

  • Van Der Valk, A.G. and Attwill, P.M. (1983) Above-and below-ground litter decomposition in an Australian salt marsh. Aust. J. Ecol., 8, 441–7

    Google Scholar 

  • Webb, J.W. (1983) Soil water salinity variations and their effects on Spartina alterniflora. Contrib. Marine Sci., 26, 1–13 Whittaker, R.H. (1975) Communities and ecosystems. 2nd edn., MacMillan, New York, 385 pp.

    Google Scholar 

  • Wiegert, R.G., Chalmers, A.G. and Randerson, P.F. (1983) Productivity gradients in salt marshes: the responses of Spartina alterniflora to experimentally manipulated soil water movements. Oikos, 41, 1–6

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Donal D. Hook

About this chapter

Cite this chapter

Morris, J.T. (1988). Pathways and Controls of the Carbon Cycle in Salt Marshes. In: The Ecology and Management of Wetlands. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8378-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8378-9_41

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8380-2

  • Online ISBN: 978-1-4684-8378-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics