Skip to main content

Physical and Biological Control of Mangrove Pore Water Chemistry

  • Chapter
The Ecology and Management of Wetlands
  • 325 Accesses

Abstract

Mangrove swamps comprise the largest fraction of tropical and subtropical intertidal wetlands, occupying over 20 million hectares worldwide (Chapman, 1976; McVey and May, 1987). Their importance as the basis of detrital food webs and as protected habitat for juvenile fish and shellfish has been well documented (Odum and Heald, 1972; Rodelli, Gearing, Gearing, Marshall and Sasekumar, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allbrook, R.F. (1973) The identification of acid-sulfate soils in northwest Malaysia, in H. Dost (ed.) Proc. Int. Symp. Acid Sulfate Soils. Int. Inst. Land Reclamation, Wageningen, Netherlands, pp. 131–40

    Google Scholar 

  • Augustinus, P.G.E.F. and Slager, S. (1971) Soil formation in swamp soils of the coastal fringe of Surinam. Geoderma 6, 203–11

    Google Scholar 

  • Boto, K.G. and Wellington, J. (1983) Soil characteristics and nutrient status of a northern Australia mangrove forest. Estuaries 7, 61–9

    Google Scholar 

  • Brinkman, R. and Pons, L.J. (1973) Recognition and prediction of acid-sulfate soils, in H. Dost (ed.) Proc. Int. Symp. Acid Sulfate Soils. Int. Inst. Land Reclamation, Wageningen, Netherlands, pp. 169–203

    Google Scholar 

  • Carlson, P.R. (1980) Radial oxygen diffusion and the role of Spartina alterniflora in the salt marsh sulfur cycle. PhD Dissertation, University of North Carolina, Chapel Hill

    Google Scholar 

  • Carlson, P.R. and Forrest, J. (1982) Uptake of dissolved sulfide by Spartina alterniflora evidence from natural sulfur isotope abundance ratios. Science 216 633–5

    PubMed  CAS  Google Scholar 

  • Carlson, P.R., Yarbro, L.A., Zimmermann, C.F. and Montgomery, J.R. (1983) Pore water chemistry of an overwash mangrove island. Florida Sci 46, 239–49

    CAS  Google Scholar 

  • Chapman, V.J. (1976) Mangrove vegetation J. Cramer, Germany Dacey, J.W.H. (1980) How aquatic plants ventilate. Oceanus 24, 43–51

    Google Scholar 

  • Dacey, J.W.H. and Howes, B.L. (1984) Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh. Science 220 487–9

    Google Scholar 

  • Dent, D. (1980) Acid sulfate soils: morphology and prediction. J. Soil Sci 31, 87–100

    Article  CAS  Google Scholar 

  • Dost, H. (1973) Proc. Int. Symp. Acid Sulfate Soils. Int. Inst. Land Reclamation, Wageningen, Netherlands

    Google Scholar 

  • Giurgevich, J.R. and Dunn, E.L. (1979) Seasonal patterns of CO2 and water vapor exchange of the tall and short height forms of Spartina alterniflora Loisel in a Georgia salt marsh. Oecologia 43, 139–56

    CAS  Google Scholar 

  • Hackney, C.T. and de la Cruz, A.D. (1980) In situ decomposition of roots and rhizomes of two tidal marsh plants. Ecology 61, 226–31

    Google Scholar 

  • Harrington, R.W. and Harrington, E.S. (1961) Food selection among fishes invading a high subtropical salt marsh: from onset of flooding through the progress of a mosquito brood. Ecology 42, 646–66

    Google Scholar 

  • Hart, M.G.R. (1959) Sulfur oxidation in tidal mangrove soils of Sierra Leone. P1. Soil 11, 215–36

    Google Scholar 

  • Hesse, P.R. (1961a) The decomposition of organic matter in a mangrove swamp soil. Pl. Soil, 14, 249–63

    Google Scholar 

  • Hesse, P.R. (1961b) Some differences between the soils of Rhizophora and Avicennia in swamps of Sierra Leone. Pl. Soil, 14, 335–46

    Google Scholar 

  • Howarth, R.H. and Hobbie, J.E. (1982) The regulation of decomposition and heterotrophic microbial activity in salt marsh soils: a review, in V.S. Kennedy (ed.) Estuarine comparisons Academic Press, New York, pp. 183–208

    Chapter  Google Scholar 

  • Howes, B.L. Howarth, R.W., Teal, J.M. and Valiela, I. (1981) Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnol. Oceanogr. 26, 350–60

    Google Scholar 

  • Joshi, M.M. and Hollis, J.P. (1977) Interaction of Beggiatoa and the rice plant: detoxification of hydrogen sulfide in the rice rhizosphere. Science 195, 179–80

    PubMed  CAS  Google Scholar 

  • Laing, H.E. (1940) The composition of the internal atmosphere of Nuphar advenum and other water plants. Am. J. Bot. 27, 861–7

    Article  CAS  Google Scholar 

  • McGovern, T.A., Laber, L.J. and Gram, B.C. (1979) Characteristics of the salts secreted by Spartina alterniflora Loisel and their relation to estuarine production. Estuar. Coastal Mar. Sci., 9, 351–6

    CAS  Google Scholar 

  • McVey, J.P. (1987) Aquaculture in mangrove wetlands, in D.D. Hook (ed.) Ecology and management of wetlands vol. 2, Croom Helm, London, pp. 303–15

    Google Scholar 

  • Montgomery, J.R., Zimmermann, C.F. and Price, M.T. (1979) The collection, analysis and variation of nutrients in estuarine pore water, Estuar. Coastal Mar. Sci. 9, 203–14

    CAS  Google Scholar 

  • National Ocean Survey (1985) Tide tables 1986: High and low water predictions, east coast of North and South America, including Greenland US Department of Commerce, Washington, DC

    Google Scholar 

  • Nickerson, N.D. and Thibodeau, F.R. (1985) Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry 1, 183–92

    Google Scholar 

  • Odum, E.P., Birch, J.B. and Cooley, J.L. (1983) Comparison of giant cutgrass productivity in tidal and impounded marshes with special reference to tidal subsidy and waste assimilation. Estuaries 6, 88–94

    Google Scholar 

  • Odum, E.P., Finn, J.T. and Franz, E.H. (1979) Perturbation theory and subsidy-stress gradient. Bioscience 29, 349–52

    Google Scholar 

  • Odum, W.E. and Heald, E.J. (1972) Trophic analyses of an estuarine mangrove community. Bull. Mar. Sci., 22, 671–738

    Google Scholar 

  • Pons, L.J. (1973) Outline of genesis, characteristics, classification and improvement of acid-sulfate soils, in H. Dost (ed.) Acid sulfate soils Int. Inst. for Land Reclamation and Improvement, Wageningen, Netherlands pp. 3–27

    Google Scholar 

  • Provost, M.W. (1973a) Mean high water mark and use of tidelands in Florida. Florida Sci., 1, 50–66

    Google Scholar 

  • Provost, M.W. (1973b) Salt marsh management in Florida. Ann. Proc. Tall Timbers Res Sta., 5

    Google Scholar 

  • Rodelli, M.R., Gearing, J.N., Gearing, P.J., Marshall, N. and Sasekumar, A. (1984) Stable isotope ratio as a tracer of mangrove carbon in Malaysian ecosystems. Oecologia 61, 326–33

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (1985) Statistical analysis system (SAS) User’s

    Google Scholar 

  • Guide SAS Institute, Raleigh, NC Scholander, P.F., Van Dam, L. and Scholander, S.I. (1955) Gas exchange in the roots of mangroves. Am. J. Bot. 42, 92–8

    Google Scholar 

  • Simpson, H.J., Ducklow, H.W., Deck, B. and Cook, H.L. (1983)

    Google Scholar 

  • Brackish water aquaculture in pyrite-bearing tropical soils. Aquaculture 34, 333–50

    Google Scholar 

  • Smith, N.P. (1983) Tidal and low-frequency net displacement in a coastal lagoon. Estuaries 6, (3), 180–9

    Google Scholar 

  • Teal, J.M. and Kanwisher, J. (1966) Gas transport in the marsh grass Spartina alterniflora. J. Exp. Bot. 17, 355–61

    Article  CAS  Google Scholar 

  • Thibodeau, F.R. and Nickerson, N.H. (1986) Differential oxidation of mangrove substrate by Avicennia germinans and Rhizophora mangle. Am. J. Bot. 73, 512–16

    Article  Google Scholar 

  • Thornton, I. and Giglioli, M.E.C. (1965) The mangrove swamps of Kenebo, lower Gambia River basin: II. Sulphur and pH in the profiles of swamp soils, J. Appl. Ecol. 2, 257–69

    Article  Google Scholar 

  • Van Raalte, M.H. (1941) On the oxygen supply of rice roots. Ann. Jard. Bot. Buitenz. 51, 43–57

    Google Scholar 

  • Lugo, A.E. and Snedaker, S.C. (1974) The ecology of mangroves. Ann. Rev. Ecol. Syst., 5, 39–64

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Donal D. Hook

About this chapter

Cite this chapter

Carlson, P.R., Yarbro, L.A. (1988). Physical and Biological Control of Mangrove Pore Water Chemistry. In: The Ecology and Management of Wetlands. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8378-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8378-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8380-2

  • Online ISBN: 978-1-4684-8378-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics