Skip to main content

Glial Plasminogen Activators in Developing and Regenerating Neural Tissue

  • Chapter
Serine Proteases and Their Serpin Inhibitors in the Nervous System

Part of the book series: NATO ASI Series ((NSSA,volume 191))

Abstract

In the following chapter I would like to introduce the postulate that a population of neural cells -- the glia -- serve as construction/remodelling agents in morphogenetic processes during development and regeneration of the nervous system. The capacity of these glial cells to perform their plasticity function effectively is dependent on their potential to generate extracellular proteolytic activities, namely, to produce plasminogen activator (PA) of the urokinase type (u-PA). Previously published and new data are being presented in support of this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Peters, S.L. Palay, and H. deF. Webster, In: “The fine structure of the nervous system: The neurons and supporting cells,” W.B. Saunders Company (1976).

    Google Scholar 

  2. R.L. Sidman, and P. Rakic, Neuronal migration, with special reference to developing human brain: A review, Brain Res., 62: 1–35 (1973).

    Google Scholar 

  3. J. Silver, S.E. Lorenz, D. Wahlsten, and J. Coughlin, Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies in vivo on the role of preformed glial pathways, J. Comp. Neurol., 210: 10–29 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. J.R. Jacobs, and C.S. Goodman, Embryonic development of axon pathways in the Drosophila CNS. I. A glial scaffold appears before the first growth cones, J. Neurosci., 9: 2402–2411 (1989).

    CAS  PubMed  Google Scholar 

  5. P.M. Richardson, A.J. Aguayo, and U.M. McGuinness, Role of sheath cells in axonal regeneration, In: “Spinal Cord Reconstruction,” Kao, Bunge, and Reier, eds., Raven Press, New York, pp. 293304 (1983).

    Google Scholar 

  6. G.S. Smith, R.H. Miller, and J. Silver, Astrocyte transplantation induces callosal regeneration in postnatal acallosal mice, Ann. N.Y. Acad. Sci., 485: 185–205 (1987).

    Article  Google Scholar 

  7. N. Kalderon, Differentiating astroglia in nervous tissue histogenesis/regeneration: studies in a model system of regenerating peripheral nerve, J. Neurosci., 21: 501–512 (1988a).

    Article  CAS  Google Scholar 

  8. F. Blasi, J.-D. Vassalli, and K. Danq, Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors, J. Cell Biol., 104: 801–804 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. P. Mignatti, E. Robbins, and D.B. Rifkin, Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade, Cell, 47: 487–498 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. H. Soreq, and R. Miskin, Plasminogen activator in the rodent brain, Brain Res., 216: 361–374 (1981).

    Google Scholar 

  11. N. Kalderon, and CA. Williams, Extracellular proteolysis: developmentally regulated activity during chick spinal cord histogenesis, Dev. Brain Res., 25: 1–9 (1986).

    Article  CAS  Google Scholar 

  12. N. Kalderon, Migration of Schwann cells and wrapping of neurites in vitro: A function of protease activity (plasmin) in the growth medium, Proc. Natl. Acad. Sci. USA, 76: 5992–5996 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. N. Kalderon, Role of the plasmin-generating system in developing nervous tissue: I. Proteolysis as a mitogenic signal for the glial cells. J. Neurosci. Res., 8: 509–519 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. J.L. Salter, and R.P. Bunge, Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury, J. Cell Biol., 84: 739–752 (1980).

    Article  Google Scholar 

  15. E.M. Hatten, Neuronal regulation of astroglial morphology and proliferation in vitro, J . Cell BioL, 100: 384–396 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. HJ. Weinberg, and P.S. Spencer, The fate of Schwann cells isolated from axonal contact, J. Neurocyt., 7: 555–569 (1978).

    Article  CAS  Google Scholar 

  17. R.G. Pellegrino, and P.S. Spencer, Schwann cell mitosis in response to regenerating peripheral axons in vivo, Brain Res., 341: 16–25 (1985).

    Google Scholar 

  18. PJ. Reier, Gliosis following CNS injury: The anatomy of astrocytic scars and their influence on axonal elongation, in: “Astrocytes”, Fedoroff, S., and Vernadakis, A., eds., Academic Press, New York, Vol. 3, pp. 263–324 (1986).

    Google Scholar 

  19. P.J. Reier, and J.D. Houlé, The glial scar: Its bearing on axonal elongation and transplantation approaches to CNS repair, Adv. Neurol., 47: 87–136 (1988).

    CAS  PubMed  Google Scholar 

  20. N. Kalderon, Schwann cell proliferation and localized proteolysis: expression of plasminogen-activator activity redominates in the proliferating cell populations, Proc. Natl. Acad. Sci. USA, 81: 7216–7220 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. A. Krystosek, and N.W. Seeds, Peripheral neurons and Schwann cells secrete plasminogen activator, J. Cell Biol., 98: 773–776 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. A. Alvarez-Buylla, and J.E. Valinsky, Production of plasminogen activator in cultures of superior cervical ganglia and isolated Schwann cells, Proc. Natl. Acad. Sci. USA, 82: 3519–3523 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. J.P. Brockes, K.L. Fields, and M.C. Raff, Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve, Brain Res., 165: 105–118 (1979).

    Google Scholar 

  24. J.P. Brockes, G.E. Lemke, and D.R. Balzer, Purification and preliminary characterization of a glial growth factor from the bovine pituitary, J. Biol. Chem., 255: 8374–8377 (1980).

    CAS  PubMed  Google Scholar 

  25. A. Granelli-Piperno, and E. Reich, A study of proteases and protease-inhibitor complexes in biological fluids, J. Exp. Med., 147: 223–234 (1978).

    Article  Google Scholar 

  26. U.K Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227: 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  27. J.-D. Vassalli, and D. Belin, Amiloride selectively inhibits the urokinase-type plasminogen activator, FEES (Fed. Eur. Biochem. Soc.) Lett. 214: 187–191, (1987).

    CAS  Google Scholar 

  28. N. Kalderon, K. Ahonen, and S. Fedoroff, The immature astrocyte as the predominant source of plasminogen-activator activity and of the urokinase type: Studies in differentiating astroglial cell cultures. Submitted for publication (1990).

    Google Scholar 

  29. McCarthy and de Vellis, Preparation of separate astroglial and aliogodendroglia cell cultures from rat cerebral tissue. J. Cell Biol., 85: 890–902 (1980).

    Article  Google Scholar 

  30. N. Kalderon, The molecular forms of plasminogen activator in differentiating astroglia are developmentally regulated, Soc. Neurosci. Abstr., 14: 1056 (1988b).

    Google Scholar 

  31. E.R. Abney, P.P. Bartlett, M.C. Raff, Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain, Dev. Biol., 83: 301–310 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. A.J. Aguayo, M. Vidal-Sanz, M.P. Villegas-Perez, G. M. Bray, Growth and connectivity of axotomized retinal neurons in adult rats with optic nerves substituted by PNS grafts linking the eye and the midbrain, Ann. N.Y. Acad. Sci., 495: 1–9 (1987).

    Article  CAS  PubMed  Google Scholar 

  33. L.R. Williams, F.M. Longo, H.C. Powell, G. Lundborg, and S. Varon, Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay, J. Comp. Neurol., 18: 460–470 (1983).

    Article  Google Scholar 

  34. G. Lundborg, R.H. Gelberman, F.M. Longo, C.H. Powell, and S. Varon, In vivo regeneration of cut nerves encased in silicone tubes. Growth across a six-millimeter gap, J. Neuropathology Exp. Neurol., 41: 412–422 (1982).

    Article  CAS  Google Scholar 

  35. A. Bignami, G. Cella, N.H. Chi, Plasminogen activators in rat neural tissues during development and in Wallerian degeneration, Acta Neuropathol. (Berl), 58: 224–228 (1982).

    CAS  Google Scholar 

  36. N. Kalderon, J.P. Kirk, and A. Juhasz, Impairment of sciatic nerve regeneration by protease inhibitor treatment: inhibition of Schwann cell migration, Soc. Neurosci. Abstr., 13: 1208 (1987).

    Google Scholar 

  37. N. Kalderon, K. Ahonen, A. Juhazs, J P Kirk, and S. Fedoroff, Astroglia and plasminogen activator activity: differential activity level in the immature, mature and “reactive” astrocytes. In: Current Issues In Neural Regeneration Research (Reier, P.J., Bunge, R.P. and Seil, F.J. eds.) Alan R. Liss Press, New York, pp. 271–280 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Kalderon, N. (1990). Glial Plasminogen Activators in Developing and Regenerating Neural Tissue. In: Festoff, B.W., Hantaï, D. (eds) Serine Proteases and Their Serpin Inhibitors in the Nervous System. NATO ASI Series, vol 191. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8357-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8357-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8359-8

  • Online ISBN: 978-1-4684-8357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics