Skip to main content

The Calculation of Intermolecular Potential Energy Surfaces

  • Chapter
Dynamics of Polyatomic Van der Waals Complexes

Part of the book series: NATO ASI Series ((NSSB,volume 227))

Abstract

It is now possible to carry out accurate ab initio calculations on molecular complexes by a variety of techniques. The supermolecule approach is widely used, and is capable of high absolute accuracy, but it is subject to Basis Set Superposition Error, especially when electron correlation is taken into account, and this is a difficulty when accurate calculations of small interaction energies are required. Perturbation theory is not subject to BSSE, but perturbation methods as currently implemented are ‘uncoupled’; that is, the response of the electrons to the perturbation is not treated self-consistently. Nevertheless this method gives a more detailed description of the interaction than the supermolecule approach, and consequently provides more physical insight into the nature of the interaction. Both of these methods require calculations to be carried out at a wide range of dimer geometries if a full description of the potential energy surface is needed, and this is extremely time-consuming.

A useful alternative approach is to isolate the components of the perturbation expansion, namely the repulsion, electrostatic interaction, induction, and dispersion terms, and to calculate each of them independently by the most appropriate technique. Thus the electrostatic interaction can be calculated accurately from distributed multipole descriptions of the individual molecules, while the induction and dispersion contributions may be derived from molecular polarizabilities. This approach has the advantage that the properties of the monomers have to be calculated only once, after which the interactions may be evaluated easily and efficiently at as many dimer geometries as required. The repulsion is not so amenable, but it can be fitted by suitable analytic functions much more satisfactorily than the complete potential. The result is a model of the intermolecular potential that is capable of describing properties to a high level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Price, S. L.; Stone, A. J. Molec. Phys. 40: 805 (1980).

    Article  ADS  Google Scholar 

  2. Bartlett, R. J. J. Phys. Chem 93: 1697 (1989).

    Article  Google Scholar 

  3. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 87: 5968 (1988).

    Article  ADS  Google Scholar 

  4. Boys, S. F.; Bernardi, F. Molec. Phys. 19: 553 (1970).

    Article  ADS  Google Scholar 

  5. van Lenthe, J. H.; van Duijneveldt-Van der Rijdt, J. G. C. M.; van Duijneveldt, F. B. Adv. Chem. Phys. 69: 521 (1987).

    Google Scholar 

  6. Knowles, P. J. private communication.

    Google Scholar 

  7. Szalewicz, K.; Cole, S. J.; Kolos, W.; Bartlett, R. J. J. Chem. Phys. 89: 3662 (1988).

    Article  ADS  Google Scholar 

  8. Stone, A. J. in Theoretical Models of Chemical Bonding, vol. 4, Z. B. Maksie, ed., Springer (1989).

    Google Scholar 

  9. Stone, A. J.; Tough, R. J. A. Chem. Phys. Lett. 110: 123 (1984).

    Article  ADS  Google Scholar 

  10. Price, S. L.; Stone, A. J.; Alderton, M. Molec. Phys. 52: 987 (1984).

    Article  ADS  Google Scholar 

  11. Buckingham, A. D. Adv. Chem. Phys. 12: 107 (1967).

    Google Scholar 

  12. Stone, A. J. Chem. Phys. Lett. 83:233 (1981); Stone, A. J.; Alderton, M. Molec. Phys. 56: 1047 (1985).

    Article  ADS  Google Scholar 

  13. Pullman, A.; Perahia, D. Theor. Chim. Acta 48: 29 (1978).

    Article  Google Scholar 

  14. Rico, J. F.; Alvarez-Collado, J. R.; Paniagua, M. Molec. Phys. 56: 1145 (1985).

    Article  ADS  Google Scholar 

  15. Cooper, D. L.; Stutchbury, N. C. J. Chem. Phys. Lett. 120: 167 (1985).

    Article  ADS  Google Scholar 

  16. Sokalski, W. A.; Sawaryn, A. J. Chem. Phys. 87: 526 (1987).

    Article  ADS  Google Scholar 

  17. Vigné-Maeder, F.; Claverie, P. J. Chem. Phys. 88: 4934 (1988).

    Article  ADS  Google Scholar 

  18. Hayes, I. C.; Stone, A. J. Molec. Phys. 53: 69 (1984)

    Article  ADS  Google Scholar 

  19. Hayes, I. C.; Stone, A. J. Molec. Phys. 53: 83 (1984)

    Article  ADS  Google Scholar 

  20. Hurst, G. J. B.; Hayes, I. C.; Stone, A. J. Molec. Phys. 53: 107 (1984).

    Article  ADS  Google Scholar 

  21. Amos, R. D.; Rice, J. E. CADPAC: The Cambridge Analytical Derivatives Package, issue 4.0, Cambridge, 1987.

    Google Scholar 

  22. Stone, A. J.; Price, S. L. J. Phys. Chem 92: 3325 (1988).

    Article  Google Scholar 

  23. Hall, G. G.;. Tsujinaga, K. Theor. Chim. Acta 69:425 (1986); Tsujinaga, K.; Hall, G. G. Theor. Chim. Acta 70: 257 (1986).

    Article  Google Scholar 

  24. Rijks, W.; Gerritsen, M.; Wormer, P. E. S. Molec. Phys. 66: 929 (1989).

    Article  ADS  Google Scholar 

  25. Stone, A. J.; Tong, C.-S. in preparation.

    Google Scholar 

  26. Wheatley, R. J.; Price, S. L., submitted for publication.

    Google Scholar 

  27. Kita, S.; Noda, K.; Inouye, H. J. Chem. Phys. 64: 3346 (1976).

    Article  Google Scholar 

  28. Kim, Y. S.; Kim, S. K.; Lee, W. D. Chem. Phys. Lett. 80: 574 (1981).

    Article  ADS  Google Scholar 

  29. Gellert, P. D.Phil. thesis, University of Oxford.

    Google Scholar 

  30. Stone, A. J. Molec. Phys. 56: 1065 (1985).

    Article  ADS  Google Scholar 

  31. Wormer, P. E. S.; Rijks, W. Phys. Rev. A33: 2928 (1986)

    Article  ADS  Google Scholar 

  32. Rijks, W.; Wormer, P. E. S. J. Chem. Phys. 88: 5704 (1988).

    Article  ADS  Google Scholar 

  33. Stone, A. J. Chem. Phys. Lett. 155: 102 (1989).

    Article  ADS  Google Scholar 

  34. Dalgarno, A.; Stewart, A. L. Proc. Roy. Soc. A 238: 276 (1956)

    Article  ADS  Google Scholar 

  35. Dalgarno, A.; Lynn, N. Proc. Phys. Soc. London, A 70: 223 (1957).

    Article  ADS  Google Scholar 

  36. Buckingham, A. D.; Pople, J. A. Trans. Faraday Soc. 51: 1173 (1955).

    Article  Google Scholar 

  37. Stone, A. J. Chem. Phys. Lett. 155: 111 (1989).

    Article  ADS  Google Scholar 

  38. Casimir, H. B. G.; Polder, D. Phys. Rev. 73: 360 (1948).

    Article  ADS  Google Scholar 

  39. Stone, A. J.; Tong, C.-S. Chem. Phys.,in press.

    Google Scholar 

  40. Visser, F.; Wormer, P. E. S.; Stam, P. J. Chem. Phys. 79: 4973 (1983)

    Article  ADS  Google Scholar 

  41. Visser, F.; Wormer, P. E. S.; Jacobs, W. P. J. H. J. Chem. Phys. 82: 3753 (1984)

    Article  ADS  Google Scholar 

  42. Visser, F.; Wormer, P. E. S. Molec. Phys. 52: 723 (1984).

    Article  Google Scholar 

  43. Douketis, C.; Scoles, G.; Marchetti, S.; Thakkar, A. J. J. Chem. Phys. 76: 3057 (1982).

    Article  ADS  Google Scholar 

  44. Tang, K. T.; Toennies, J. P. Chem. Phys. 80: 3276 (1984).

    Google Scholar 

  45. Knowles, P. J.; Meath, W. J. Chem. Phys. Lett. 124:164 (1986); Molec. Phys. 59:965 (1986); Molec. Phys. 60: 1143 (1987).

    Article  ADS  Google Scholar 

  46. Clary, D. C.; Lovejoy, C, M.; ONeil, S. V.; Nesbitt, D. J. Phys. Rev. Letters 61: 1576 (1988);

    Article  ADS  Google Scholar 

  47. Clary, D. C.; Nesbitt, D. J. J. Chen. Phys. 90: 7000 (1989)

    Article  ADS  Google Scholar 

  48. Nesbitt, D. J.; Lovejoy, C. M.; Lindeman, T. G.; ONeil, S. V.; Clary, D. C. J. Chem. Phys. 91: 722 (1989)

    Article  ADS  Google Scholar 

  49. ONeil, S. V.; Nesbitt, D. J.; Rosmus, P; Werner, H.-J.; Clary, D. C. J. Chem. Phys. 91:711 (1989); Clary, D. C. this volume.

    Google Scholar 

  50. Nesbitt, D. J.; Child, M. S.; Clary, D. C. J. Chem. Phys. 90: 4855 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Stone, A.J. (1990). The Calculation of Intermolecular Potential Energy Surfaces. In: Halberstadt, N., Janda, K.C. (eds) Dynamics of Polyatomic Van der Waals Complexes. NATO ASI Series, vol 227. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8009-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8009-2_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8011-5

  • Online ISBN: 978-1-4684-8009-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics