Skip to main content

Abstract

Glutamine is the most abundant amino acid in plasma and most tissues (Van Slyke et al., 1943). Because of both empirical reasoning and cellular requirements determined experimentally, it is the most abundant amino acid in most cell culture media (Ham and McKeehan, 1979). Although other amino acids have metabolic functions in addition to protein and peptide synthesis, glutamine is the most versatile (Krebs, 1980). It is the major source of urinary nitrogen and a key factor in acid—base balance in mammals. The carbon skeleton of glutamine is an important precursor of glucose in kidney cortex and thus contributes to renal gluconeogenesis (Krebs, 1963; Goodman et al., 1966). Glutamine is a vehicle for transporting nitrogen among tissues. Skeletal muscle is the principal site of glutamine production. Release of glutamine from muscle is nearly four times that that can be accounted for by direct protein breakdown (Blackshear et al., 1975; Pardridge and Casenello-Ertl, 1979; Garber, 1980). The principal site of net glutamine metabolism appears to be the gut (Windmueller and Spaeth, 1974; Hanson and Parsons, 1977) followed by the liver (Blackshear et al., 1975). Glutamine is a key metabolite for elimination of toxic ammonia in nerve tissue and may be an important precursor of glutamate and a-aminobutyrate, a synaptic transmitter (Waelsch, 1960; Takagaki et al.,1961). In addition to its specific roles in multiple tissues, glutamine is the primary amino group donor in synthesis of purines and pyrimidines, amino sugars, pyridine nucleotides, and asparagine in mammalian cells. The reader is referred to the following books and reviews for an in-depth picture of the role of glutamine (and glutamate) in mammals: Meister (1956, 1965), Lund et al. (1970), Prusiner and Stadtman (1973), Shepartz (1973), Meister (1978), Munro (1978), Mora and Palacios (1980), Kovacevic and McGivan (1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ababei, L., Sarkar, S. R., and Rapoport, S., 1962, Deamination as a locus of action of glucose inhibition of respiration in reticulocytes, Acta Biol. Med. Ger. 8: 266.

    PubMed  CAS  Google Scholar 

  • Adachi, H., 1967, The placenta and hormones, J. Jpn. Obstet. Gynecol. Soc. 19: 665.

    CAS  Google Scholar 

  • Aoki, T., Morris, H. P., and Weber, G., 1982, Regulatory properties and behavior of carbamoyl phosphate synthetase II (glutamine-hydrolyzing) in normal and proliferating tissues, J. Biol. Chem. 257: 432.

    PubMed  CAS  Google Scholar 

  • Ardawi, M. S. M., and Newsholme, E. A., 1982a, Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat, Biochem. J. 208: 743.

    PubMed  CAS  Google Scholar 

  • Ardawi, M. S. M., and Newsholme, E. A., 1982b, Glutamine metabolism in lymphocytes of the rat, Biochem. J. 212: 835.

    Google Scholar 

  • Azzi, A., Chappell, J. B., and Robinson, B. H., 1967, Penetration of mitochondrial membrane by glutamate and aspartate, Biochem. Biophys. Res. Commun. 29: 148.

    PubMed  CAS  Google Scholar 

  • Bae, I. H., and Foote, R. H., 1975a, Utilization of glutamine for energy and protein synthesis by cultured rabbit follicular oocytes, Exp. Cell Res. 90: 432.

    PubMed  CAS  Google Scholar 

  • Bae, I. H., and Foote, R. H., 1975b, Carbohydrate and amino acid requirements and ammonia production of rabbit follicular oocytes matured in vitro, Exp. Cell Res. 91: 113.

    PubMed  CAS  Google Scholar 

  • Barsh, G. S., and Cunningham, D. D., 1977, Nutrient uptake and control of animal cell proliferation, J. Supramol. Struct. 7: 61.

    PubMed  CAS  Google Scholar 

  • Baverel, G., and Lund, P., 1979, A role for bicarbonate in the regulation of mammalian glutamine metabolism, Biochem. J. 184: 599.

    PubMed  CAS  Google Scholar 

  • Berl, S., and Clarke, D. D., 1969, Compartmentation of amino acid metabolism, in: Handbook of Neurochemistry ( A. Lajtha, ed.), Vol. 2, pp. 447–450, Plenum Press, New York.

    Google Scholar 

  • Berl, S., Clarke, D. D., and Schneider, D. (eds.), 1975, Metabolic Compartmentation and Neurotransmission, Plenum Press, New York.

    Google Scholar 

  • Blackshear, P. J., Holloway, P. A. H., and Alberti, K. G. M., 1975, Factors regulating amino-acid release from extrasplanchnic tissues in rat—Interactions of alanine and glutamine, Biochem. J. 150: 379.

    PubMed  CAS  Google Scholar 

  • Blitz, R. M., Letteri, J. M., Pellegrino, E. D., and Pinkus, L., 1982, Glutamine: A new metabolic substrate, Adv. Exp. Med. Biol. 157: 423.

    Google Scholar 

  • Borst, P., 1962, The pathway of glutamate oxidation by mitochondri isolated from different tissues, Biochim. Biophys. Acta 57: 256.

    PubMed  CAS  Google Scholar 

  • Bradford, H. F., and Ward, H. K., 1975, Glutamine as a metabolic substrate for isolated nerve-endings: Inhibition by ammonium ions, Biochem. Soc. Trans. 3: 1223.

    CAS  Google Scholar 

  • Bradford, H. F., and Ward, H. K., 1976, On glutaminase activity in mammalian synaptosomes, Brain Res. 110: 115.

    PubMed  CAS  Google Scholar 

  • Brdiczka, D., and Pette, D., 1971, Intra-and extramitochondrial isozymes of (NADP) malate dehydrogenase, Eur. J. Biochem. 19: 546.

    PubMed  CAS  Google Scholar 

  • Buchanan, J. M., 1973, The amidotransferases, Adv. Enzymol. 39: 91.

    PubMed  CAS  Google Scholar 

  • Calman, K. C., 1982, Cancer cachexia, Br. J. Hosp. Med. 27: 28.

    PubMed  CAS  Google Scholar 

  • Chappell, J. B., 1968, Systems used for transport of substrates into mitochondria, Br. Med. Bull. 24: 150.

    PubMed  CAS  Google Scholar 

  • Coles, N. W., and Johnstone, R. M., 1962, Glutamine metabolism in Ehrlich ascites-carcinoma cells, Biochem. J. 83: 284.

    PubMed  CAS  Google Scholar 

  • Cori, C. F., 1981, The glucose-lactic acid cycle and gluconeogenesis, Curr. Top. Cell. Regul. 18: 2237.

    Google Scholar 

  • Costa, G., 1977, Cachexia, the metabolic component of neoplastic diseases, Cancer Res. 37: 2237.

    Google Scholar 

  • Crabtree, B., and Newsholme, E. A., 1985, A quantitative approach to metabolic control, Curr. Topics Cell. Regul. 25: 21.

    CAS  Google Scholar 

  • Crompton, M., and Chappell, J. B., 1973, Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation, Biochem. J. 132: 35.

    PubMed  CAS  Google Scholar 

  • Curthoys, N. P., and Shapiro, R. A., 1978, Effect of metabolic acidosis and of phosphate on presence of glutamine within matrix space of rat renal mitochondria during glutamine transport, J. Biol. Chem. 253: 63.

    PubMed  CAS  Google Scholar 

  • Curthoys, N. P., Sindel, R. W., and Lowry, O. H., 1973, Rat kidney glutaminase isozymes, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadtman, eds.), pp. 259–276, Academic Press, New York.

    Google Scholar 

  • Deaciuc, I. V., and Petrescu, I., 1980, Regulation of glutamine catabolism in the perfused guineapig liver in relation to ureogenesis and gluconeogenesis, Int. J. Biochem. 12: 605.

    PubMed  CAS  Google Scholar 

  • Dean, B., and Bartley, W., 1973, Oxaloacetate decarboxylases of rat liver, Biochem. J. 135: 667.

    PubMed  CAS  Google Scholar 

  • DeFrancesco, L., Wentz, D., and Scheffler, I. E., 1975, Conditionally lethal mutations in Chinese hamster cells: Characterization of a cell line with a possible defect in the Krebs cycle, J. Cell. Physiol. 85: 293.

    PubMed  CAS  Google Scholar 

  • Denton, R. M., and McCormack, J. G., 1980, On the role of the calcium-transport cycle in heart and other mammalian mitochondria, FEBS Lett. 119: 1.

    PubMed  CAS  Google Scholar 

  • Donnelly, M., and Scheffler, I. E., 1976, Energy metabolism in respiration-deficient and wild-type Chinese hamster fibroblasts in culture, J. Cell. Physiol. 89: 39.

    PubMed  CAS  Google Scholar 

  • Eagle, H., Oyama, V. I., Levy, M., Horton, C. L., and Fleischman, R., 1956, The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid, J. Biol. Chem. 218: 607.

    PubMed  CAS  Google Scholar 

  • Eagle, H., Barban, S., Levy, M., and Schulze, H. O., 1958, The utilization of carbohydrates by human cell cultures, J. Biol. Chem. 233: 551.

    PubMed  CAS  Google Scholar 

  • Eigenbrodt, E., and Glossmann, H., 1980, Glycolysis—One of the keys to cancer? Trends Pharmacol. Sci. May: 240.

    Google Scholar 

  • Fagan, J. B., and Racker, E., 1978, Determinants of glycolytic rate in normal and transformed chick embryo fibroblasts, Cancer Res. 38: 749.

    PubMed  CAS  Google Scholar 

  • Felig, P., 1973, The glucose–alanine cycle, Metabolism 22: 179.

    PubMed  CAS  Google Scholar 

  • Fenselau, A., Wallis, K., and Morris, H. P., 1975, Acetoacetate coenzyme A transferase activity in rat hepatomas, Cancer Res. 35: 2315.

    PubMed  CAS  Google Scholar 

  • Fenselau, A., Wallis, K., and Morris, H. P., 1976, Subcellular localization of acetoacetate coenzyme A transferase in rat hepatomas, Cancer Res. 36: 4429.

    PubMed  CAS  Google Scholar 

  • Franchi, A., Silvestre, P., and Pouysségur, J., 1981, A genetic approach to the role of energy metabolism in the growth of tumor cells: Tumorigenicity of fibroblast mutants deficient either in glycolysis or in respiration, Im. J. Cancer 27: 819.

    CAS  Google Scholar 

  • Frizzel, R. A., Markscheid-Kaspi, L., and Schultz, S. G., 1974, Oxidative metabolism of rabbit ileal mucosa, Am. J. Physiol. 226: 1142.

    Google Scholar 

  • Garber, A. J., 1980, Glutamine metabolism in skeletal muscle, in: Glutamine: Metabolism, Enzymology and Regulation ( J. Mora and R. Palacious, eds.), pp. 259–284, Academic Press, New York.

    Google Scholar 

  • Garber, A. J., Karl, I. E., and Kipnis, D. M., 1976, Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release, J. Biol. Chem. 251: 826.

    PubMed  CAS  Google Scholar 

  • Gilbert, J. B.,, Price, V. E., and Greenstein, J. P., 1949, Effect of anions on the non-enzymatic desamidation of glutamine, J. Biol. Chem. 180: 209.

    PubMed  CAS  Google Scholar 

  • Glazer, R. I., Vogel, C. L., Potel, I. R., and Anthony, P. P., 1974, Glutamate dehydrogenase activity related to histopathological grade of hepatocellular carcinoma in man, Cancer Res. 34: 2975.

    PubMed  CAS  Google Scholar 

  • Godfrey, S., Kuhlenschmidt, T., and Curthoys, N. P., 1977, Correlation between activation and dimer formation of rat renal phosphate-dependent glutaminase, J. Biol. Chem. 252: 1927.

    PubMed  CAS  Google Scholar 

  • Goetz, I. E., Weinstein, C., and Roberts, E., 1973, Properties of a hamster tumor cell line grown in a glutamine-free medium, In Vitro 9: 46.

    PubMed  CAS  Google Scholar 

  • Gold, J., 1966, Metabolic profiles in human tumors. I. A new technic for the utilization of human solid tumors in cancer research and its application to the anaerobic glycolysis of isologous benign and malignant colon tissues, Cancer Res. 26: 695.

    PubMed  CAS  Google Scholar 

  • Gold, J., 1974, Cancer cachexia and gluconeogenesis, Ann. N.Y. Acad. Sci. 230: 103.

    PubMed  CAS  Google Scholar 

  • Goldstein, L., and Boylan, J. M., 1978, Renal mitochondrial glutamine transport and metabolism—Studies with a rapid-mixing, rapid-filtration technique, Am. J. Physiol. 234: F514.

    PubMed  CAS  Google Scholar 

  • Goodman, A. D., Fuisz, R. E., and Cahill, G. F., 1966, Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: Its possible role in regulation of renal ammonia production, J. Clin. Invest. 45: 612.

    PubMed  CAS  Google Scholar 

  • Graff, S., Moser, H., Kastner, O., Graff, A. M., and Tannenbaum, M., 1965, The significance of glycolysis, J. Natl. Cancer Inst. 34: 511.

    PubMed  CAS  Google Scholar 

  • Gregg, C. T., 1972, Some aspects of the energy metabolism of mammalian cells, in: Growth Nutrition and Metabolism of Cells in Culture ( G. H. Rothblat and V. J. Cristofalo, eds.), pp. 83–129, Academic Press, New York.

    Google Scholar 

  • Griffiths, J. B., and Pirt, S. J., 1967, The uptake of amino acids by mouse cells (strain LS) during growth in batch culture and chemostat culture, Proc. R. Soc. London Ser. B 168: 421.

    CAS  Google Scholar 

  • Guidotti, G. G., Borghetti, A. F., and Gozzola, G. C., 1978, The regulation of amino acid transport in animal cells, Biochim. Biophys. Acta 515: 329.

    PubMed  CAS  Google Scholar 

  • Gwatkin, R. B. L., and Haidri, A. A., 1973, Requirements for the maturation of hamster oocytes in vitro, Exp. Cell Res. 76: 1.

    PubMed  CAS  Google Scholar 

  • Ham, R. G., and McKeehan, W. L., 1979, Media for growth of cells in culture, Methods Enzymol. 5: 44.

    Google Scholar 

  • Ham, R. G., Hammond, S. L., and Miller, L. L., 1977, Critical adjustment of cysteine and glutamine concentrations for improved clonal growth of WI-38 cells, In Vitro 13: 1.

    PubMed  CAS  Google Scholar 

  • Hansford, R. G., 1980, Control of mitochondrial substrate oxidation, Curr. Top. Bioenerg. 10: 217.

    CAS  Google Scholar 

  • Hansford, R. G., and Lehninger, A. L., 1973, Active oxidative decarboxylation of malate by mitochondria isolated from L-1210 ascites tumor cells, Biochem. Biophys. Res. Commun. 51: 480.

    PubMed  CAS  Google Scholar 

  • Hanson, P. J., and Parsons, D. S., 1977, Metabolism and transport of glutamine and glucose in vascularly perfused small intestine of rat, Biochem. J. 166: 509.

    PubMed  CAS  Google Scholar 

  • Hanson, P. J., and Parsons, D. S., 1980, The interrelationship between glutamine and alanine in the intestine, Biochem. Soc. Trans. 8: 506.

    PubMed  CAS  Google Scholar 

  • Haruno, K., 1956, Changes in glutaminase activity of liver tissue from rats during the development of hepatic tumors by carcinogen feeding, Gann 47: 231.

    CAS  Google Scholar 

  • Hems, R., Stubbs, M., and Krebs, H. A., 1968, Restricted permeability of rat liver for glutamate and succinate, Biochem. J. 107: 807.

    PubMed  CAS  Google Scholar 

  • Hertz, L., Yu, A., Svenneby, G., Kvamme, E., Fosmark, H., and Shousboe, A., 1980, Absence of preferential glutamine uptake into neurons—an indication of a net transfer of TCA constituents from nerve endings to astrocytes, Neurosci. Lett. 16: 103.

    PubMed  CAS  Google Scholar 

  • Herzfeld, A., and Roper, S. M., 1979, Effects of cortisol or starvation on the activities of four enzymes in small intestine and liver of the rat during development, J. Dev. Physiol. 1: 315.

    PubMed  CAS  Google Scholar 

  • Hills, A. G., Reid, E. L., and Kerr, W. D., 1972, Circulatory transport of L-glutamine in fasted mammals: Cellular sources of urine ammonia, Am. J. Physiol. 223: 1470.

    PubMed  CAS  Google Scholar 

  • Hoek, J. B., and Njogu, R. M., 1976, Glutamate transport and trans-membrane pH gradient in isolated rat liver mitochondria, FEBS Lett. 71: 341.

    PubMed  CAS  Google Scholar 

  • Holzman, I. R., Phillips, A. F., and Battaglia, F. C., 1979, Glucose metabolism, lactate, and ammonia production by the human placenta in vitro, Pediatr. Res. 13: 117.

    PubMed  CAS  Google Scholar 

  • Homsby, P. J., and Gill, G. N., 1981, Regulation of glutamine and pyruvate oxidation in cultured adrenocortical cells by cortisol, antioxidants, and oxygen: Effects on cell proliferation, J. Cell. Physiol. 109: 111.

    Google Scholar 

  • Horowitz, B., Madras, B. K., Meister, A., and Stockert, E., 1968, Asparagine synthetase activity of mouse leukemias, Science 160: 533.

    PubMed  CAS  Google Scholar 

  • Horowitz, M. L., and Knox, W. E., 1968, A phosphate activated glutaminase in rat liver different from that in kidney and other tissues, Enzymol. Biol. Clin. 9: 241.

    CAS  Google Scholar 

  • Huang, Y. Z., and Knox, W. E., 1976, A comparative study of glutaminase isozymes in rat tissues, Enzyme 21: 408.

    PubMed  CAS  Google Scholar 

  • Hume, D. A., Radik, J. L., Ferber, E., and Weidemann, M. J., 1978, Aerobic glycolysis and lymphocyte transformation, Biochem. J. 174: 703.

    PubMed  CAS  Google Scholar 

  • Ishikawa, E., 1976, Regulation of uptake and output of amino-acids by rat tissues, Adv. Enzyme Regul. 14: 117.

    PubMed  CAS  Google Scholar 

  • Janski, A. M., and Cornell, N. W., 1980, Subcellular distribution of enzymes determined by rapid digitonin fractionation of isolated hepatocytes, Biochem. J. 186: 423.

    PubMed  CAS  Google Scholar 

  • Kaplan, R. S., Morris, H. P., and Coleman, P. S., 1982, Kinetic characteristics of citrate influx and efflux with mitochondria from Morris hepatomas 3924A and 16, Cancer Res. 42: 4399.

    PubMed  CAS  Google Scholar 

  • Katunuma, N., Huzino, A., and Tomino, I., 1967, Organ specific control of glutamine metabolism, Adv. Enzyme Regul. 5: 55.

    PubMed  CAS  Google Scholar 

  • Katunuma, N., Kuroda, Y., Yoshida, T., Sanada, Y., and Morris, H. P., 1972, Relationship between degree of differentiation and growth rate of minimal deviation hepatomas and kidney cortex tumors studied with glutaminase isozymes, Gann 13: 143.

    Google Scholar 

  • Katunuma, N., Katsunuma, T., Towatari, T., and Tomino, I., 1973, Regulatory mechanisms of glutamine catabolism, in: The Enzymes of Glutamine Metabolism ( S. Prusiner and E. R. Stadt-man, eds.), pp. 227–258, Academic Press, New York.

    Google Scholar 

  • Kilberg, M. S., Handlogten, M. E., and Christensen, H. N., 1980, Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs, J. Biol. Chem. 255: 4011.

    PubMed  CAS  Google Scholar 

  • Kitos, P. A., Sinclair, R., and Waymouth, C., 1962, Glutamine metabolism by animal cells growing in a synthetic medium, Exp. Cell Res. 27: 307.

    PubMed  CAS  Google Scholar 

  • Klingenberg, M., 1970, Metabolite transport in mitochondria: An example for intracellular membrane function, in: Essays in Biochemistry ( P. N. Campbell and F. Dickens, eds.), Vol. 6, pp. 119–159, Academic Press, New York.

    Google Scholar 

  • Klingenberg, M., 1971, Kinetic study of the dicarboxylic carrier in rat liver mitochondria, Eur. J. Biochem. 22: 66.

    PubMed  Google Scholar 

  • Knox, W. E., 1976, Enzyme Patterns in Fetal, Adult and Neoplastic Rat Tissues, 2nd ed., Karger, Basel.

    Google Scholar 

  • Knox, W. E., Tremblay, G. C., Spanier, B. B., and Friedell, G. H., 1967, Glutaminase activities in normal and neoplastic tissues of the rat, Cancer Res. 27: 1456.

    PubMed  CAS  Google Scholar 

  • Knox, W. E., Horowitz, M. L., and Friedell, G. H., 1969, The proportionality of glutaminase content to growth rate and morphology of rat neoplasmas, Cancer Res. 29: 669.

    PubMed  CAS  Google Scholar 

  • Koser, B. H., and Christensen, H. N., 1971, Effect of substrate structure on coupling ratio for Na±-dependent transport of amino-acids, Biochim. Biophys. Acta 241: 9.

    PubMed  CAS  Google Scholar 

  • Kovacevie, Z., 1971, The pathway of glutamine and glutamate oxidation in isolated mitochondria from mammalian cells, Biochem. J. 125: 757.

    Google Scholar 

  • Kovacevic, Z., 1974, Properties and intracellular localization of Ehrlich ascites tumor cell glutaminase, Cancer Res. 34: 3403.

    PubMed  CAS  Google Scholar 

  • Kovacevic, Z., 1975, Possible mechanisms of efflux of glutamate from kidney mitochondria generated by activity of mitochondria) glutaminase, Biochim. Biophys. Acta 396: 325.

    PubMed  CAS  Google Scholar 

  • Kovacevic, Z., and McGivan, J. D., 1983, Mitochondrial metabolism of glutamine and glutamate and its physiological significance, Phys. Rev. 63: 547.

    CAS  Google Scholar 

  • Kovacevic, Z., and Morris, H. P., 1972, The role of glutamine in the oxidative metabolism of malignant cells, Cancer Res. 32: 326.

    PubMed  CAS  Google Scholar 

  • Krebs, H. A., 1935, Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues, Biochem. J. 29:1951. Krebs, H. A., 1963, Renal gluconeogenesis, Adv. Enzyme Regul. 1: 385.

    Google Scholar 

  • Krebs, H. A., 1980, Glutamine metabolism in the animal body, in: Glutamine: Metabolism, Enzymology, and Regulation ( J. Mora and R. Palacios, eds.), pp. 319–329, Academic Press, New York.

    Google Scholar 

  • Kvamme, E., and Svenneby, G., 1961, The effect of glucose on glutamine utilization by Ehrlich ascites tumor cells, Cancer Res. 21: 92.

    PubMed  CAS  Google Scholar 

  • Lamar, C., 1968, Studies on two glutaminase systems from rat kidney, Biochim. Biophys. Acta 151: 188.

    PubMed  CAS  Google Scholar 

  • Lalloue, K. F., and Schoolwerth, A. C., 1979, Metabolite transport in mitochondria, Annu. Rev. Biochem. 48: 871.

    Google Scholar 

  • Lavietes, B. B., Regan, D. H., and Demopoulos, H. B., 1974, Glutamate oxidation of 6C3HED lymphoma: Effects of L-asparaginase on sensitive and resistant lines, Proc. Natl. Acad. Sci. USA 71: 3993.

    PubMed  CAS  Google Scholar 

  • Lawson, D. H., Richmond, A., Nixon, D. W., and Rudman, D., 1982, Metabolic approaches to cancer cachexia, Annu Rev. Nutr. 2: 277.

    PubMed  CAS  Google Scholar 

  • Lazo, P., 1981, Amino acids and glucose utilization by different metabolic pathways in ascites-tumour cells, Eur. J. Biochem. 117: 19.

    PubMed  CAS  Google Scholar 

  • Lazo, P. A., and Sols, A., 1980, Energetics of tumour cells: Enzyme basis of aerobic glycolysis, Biochem. Soc. Trans. 8: 579.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L., 1975, Biochemistry: The Molecular Basis of Cell Structure and Function, Worth, New York.

    Google Scholar 

  • Lemons, L. H., Adkock, E. W., Jones, M. D., Naughton, M. A., Meschia, G., and Battaglia, F. C., 1976, Umbilical uptake of amino acids in the unstressed fetal lamb, J. Clin. Invest. 58: 1428.

    PubMed  CAS  Google Scholar 

  • Levintow, L., Eagle, H., and Piez, K. A., 1957, The role of glutamine in protein biosynthesis in tissue culture, J. Biol. Chem. 227: 929.

    PubMed  CAS  Google Scholar 

  • Linder-Horowitz, M., Knox, W. E., and Morris, H. P., 1969, Glutaminase activities and growth rates of rat hepatomas, Cancer Res. 29: 1195.

    PubMed  CAS  Google Scholar 

  • Linn, R. C., and Davis, E. J., 1974, Malic enzymes of rabbit heart mitochondria: Separation and comparison of some characteristics of a nicotinamide adenine dinucleotide-preferring and a nicotinamide adenine dinucleotide phosphate-specific enzyme, J. Biol. Chem. 249: 3867.

    Google Scholar 

  • Lowenstein, J. M., 1969, Citric Acid Cycle, Control and Compartmentation, Dekker, New York.

    Google Scholar 

  • Lowenstein, J. M., 1972, Ammonia production in muscle and other tissue: The purine nucleotide cycle, Phys. Rev. 52: 382.

    CAS  Google Scholar 

  • Luchinsky, H. L., 1951, The activity of glutaminase in the human placenta, Arch. Biochem. Biophys. 31: 132.

    Google Scholar 

  • Lund, P., 1971, Control of glutamine synthesis in rat liver, Biochem. J. 124: 653.

    PubMed  CAS  Google Scholar 

  • Lund, P., 1980, Glutamine metabolism in the rat, Biochem. J. 117: K86.

    Google Scholar 

  • Lund, P., and Watford, M., 1976, Glutamine as a precursor of urea, in: The Urea Cycle ( S. Grisolia, R. Bagenna, and F. Mayor, eds.), pp. 479–485, Wiley, New York.

    Google Scholar 

  • Lund, P., Bresnan, J. T., and Eggleston, L. V., 1970, The regulation of ammonia metabolism in mammalian tissue, in: Essays in Cell Metabolism ( W. Bartley, H. L. Kornberg, and J. R. Quayle, eds.), pp. 167–180, Wiley, New York.

    Google Scholar 

  • McCormack, J. G., and Denton, R. M., 1981, A comparative study of the regulation by Cat+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources, Biochem. J. 196: 619.

    PubMed  CAS  Google Scholar 

  • McKeehan, W. L., 1982, Glycolysis, glutaminolysis and cell proliferation, Cell Biol. Int. Rep. 6: 635.

    PubMed  CAS  Google Scholar 

  • McKeehan, W. L., and McKeehan, K. A., 1982, Changes in NAD(P)+-dependent malic enzyme and malate dehydrogenase activities during fibroblast proliferation, J. Cell. Physiol. 110: 142.

    PubMed  CAS  Google Scholar 

  • McMenamy, R. H., Shoemaker, W. C., Richmond, J. E., and Elwyn, D., 1962, Uptake and metabolism of amino acids by the dog liver perfused in situ, Am. J. Physiol. 202: 407.

    CAS  Google Scholar 

  • Makarewicz, W., and Swierczynski, J., 1982, Ammonia formation from some amino acids by human term placental mitochondria, Biochem. Med. 28: 135.

    PubMed  CAS  Google Scholar 

  • Mandella, R. D., and Sauer, L. A., 1975, The mitochondrial malic enzymes: Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex, J. Biol. Chem. 250: 5877.

    PubMed  CAS  Google Scholar 

  • Meister, A., 1956, Metabolism of glutamine, Physiol. Rev. 36: 103.

    PubMed  CAS  Google Scholar 

  • Meister, A., 1962, Amide nitrogen transfer (survey), The Enzymes 16: 247.

    Google Scholar 

  • Meister, A., 1965, Glutamic acid and glutamine, in: Biochemistry of the Amino Acids, Vol. 2, pp. 617–635, Academic Press, New York.

    Google Scholar 

  • Meister, A., 1978, Biochemistry of glutamate, glutamine and glutathione, in: Glutamic Acid: Advances in Biochemistry and Physiology ( L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and W. J. Wartman, eds.), pp. 369–385, Raven Press, New York.

    Google Scholar 

  • Miller, R. E., and Canino, D. A., 1981, An association between glutamine synthetase activity and adipocyte differentiation in cultured 3T3–L1 cells, Arch. Biochem. Biophys. 209: 486.

    PubMed  CAS  Google Scholar 

  • Mora, J., and Palacios, R. (eds.), 1980, Glutamine: Metabolism, Enzymology and Regulation, Academic Press, New York.

    Google Scholar 

  • Moreadith, R. W., and Lehninger, A. L., 1984a, The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondria) NAD(P) + -dependent malic enzyme, J. Biol. Chem. 259: 6215.

    PubMed  CAS  Google Scholar 

  • Moreadith, R. W., and Lehninger, A. L., 1984b, Purification, kinetic behavior, and regulation of NAD(P) + malic enzyme of tumor mitochondria, J. Biol. Chem. 259: 6222.

    PubMed  CAS  Google Scholar 

  • Morehouse, R. F., and Curthoys, N. P., 1981, Properties of rat renal phosphate-dependent glutaminase coupled to Sepharose, Biochem. J. 193: 709.

    PubMed  CAS  Google Scholar 

  • Morris, H. P., 1972, Isozymes in selected hepatomas and some biological characteristics of a spectrum of transplantable hepatomas, Gann 13: 95.

    Google Scholar 

  • Munro, H. M., 1978, Factors in the regulation of glutamate metabolism, in: Glutamic Acid: Advances in Biochemistry and Physiology ( L. J. Filer, Jr., S. Garattini, M. R. Kare, W. A. Reynolds, and R. J. Wartman, eds.), pp. 55–65, Raven Press, New York.

    Google Scholar 

  • Nagel, W. O., Dauchy, R. T., and Sauer, L., 1980, Mitochondrial malic enzymes: An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague—Dawley rat tissues, J. Biol. Chem. 255: 3849.

    PubMed  CAS  Google Scholar 

  • Nagel, W. O., and Sauer, L. A., 1982, Mitochondrial malic enzymes. Purification and properties of the NAD(P)+-dependent malic enzyme from canine intestinal mucosa.

    Google Scholar 

  • Neptune, E. M., Jr., 1965, Respiration and oxidation of various substrates by ileum in vitro, Am. J. Physiol. 209: 329.

    PubMed  CAS  Google Scholar 

  • Newsholme, E. A., Crabtree, B., and Ardawi, M. S. M., The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells, Bioscience Rep. 5: 393.

    Google Scholar 

  • Nyhan, W. L., and Busch, H., 1958a, Metabolic patterns for L-glutamate-U-C14 in tissues of tumor-bearing rats, Cancer Res. 18: 385.

    PubMed  CAS  Google Scholar 

  • Nyhan, W. L., and Busch, H., 19586, Metabolic patterns for succinate-2-C14 in tissues of tumor-bearing rats, Cancer Res. 18: 1203.

    Google Scholar 

  • Olivera, A., and Meigs, R., 1975, Mitochondria from human term placenta. I. Isolation and assay conditions for oxidative phosphorylation, Biochim. Biophys. Acta 376: 426.

    PubMed  CAS  Google Scholar 

  • Olivotto, M., and Paoletti, F., 1981, The role of respiration in tumor cell transition from the noncycling to the cycling state, J. Cell. Physiol. 107: 243.

    PubMed  CAS  Google Scholar 

  • Olivotto, M., Caldini, R., Chevanne, M., and Apolleschi, M. G., 1983, The respiration-linked limiting step of tumor cell transition from the noncycling to the cycling state: Its inhibition by oxidizable substrates and its relation to purine metabolism, J. Cell. Physiol. 116: 149.

    PubMed  CAS  Google Scholar 

  • Ottaway, J. H., McClellan, J. A., and Saunderson, C. L., 1981, Succinic thiokinase and metabolic control, Int. J. Biochem. 13: 401.

    PubMed  CAS  Google Scholar 

  • Palmieri, F., Quagliariello, E., and Klingenberg, M., 1972, Kinetics and specificity of the oxoglutarate carrier in rat-liver mitochondria, Eur. J. Biochem. 29: 408.

    PubMed  CAS  Google Scholar 

  • Papaconstantinou, J., Goldberg, E. B., and Colowick, S. P., 1963, The role of glycolysis in the growth of tumor cells, in: Control Mechanisms in Respiration and Fermentation ( B. Wright, ed.), pp. 243–251, Ronald Press, New York.

    Google Scholar 

  • Paradies, G., Capuano, F., Palombi, G., Galeotti, T., and Papa, S., 1983, Transport of pyruvate in mitochondria from different tumor cells, Cancer Res. 43: 5068.

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M., and Casenello-Ertl, D., 1979, Effects of glutamine deprivation on glucose and amino-acid metabolism in tissue culture, Am. J. Physiol. 236: E234.

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Davidson, M. B., and Casenello-Ertl, D., 1978, Glucose and amino acid metabolism in an established line of skeletal muscle cells, J. Cell. Physiol. 96: 309.

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M., Duducgian-Vartavarian, L., Casenello-Ertl, D., Jones, M. R., and Kopple, J. D., 1980, Glucose and amino acid metabolism in neonatal rat skeletal muscle in tissue culture, J. Cell. Physiol. 102: 91.

    PubMed  CAS  Google Scholar 

  • Pederson, P. L., 1978, Tumor mitochondria and the bioenergetics of cancer cells, Prog. Exp. Tumor Res. 22: 190.

    Google Scholar 

  • Pinkus, L. M., and Berkowitz, J. M., 1980, Utilization of glutamine by canine pancreas in vivo and acinar cells in vitro, Fed. Proc. 39: 1902.

    Google Scholar 

  • Pinkus, L. M., and Windmueller, H. G., 1977, Phosphate-dependent glutaminase of small intestine: Localization and role in intestinal glutamine metabolism, Arch. Biochem. Biophys. 182: 506.

    PubMed  CAS  Google Scholar 

  • Pitts, R. F., Pilkington, L. A., MacLeod, M. B., and Leal-Pinto, E., 1972, Metabolism of glutamine by intact functioning kidney of dog—Studies in metabolic-acidosis and alkalosis, J. Clin. Invest. 51: 557.

    PubMed  CAS  Google Scholar 

  • Porteous, J. W., 1980, Glutamate, glutamine, aspartate, asparagine, glucose and ketone body metabolism in chick intestinal brush-border cells, Biochem. J. 188: 619.

    PubMed  CAS  Google Scholar 

  • Pouysségur, J., Franchi, A., Salomon, J.-C., and Silvestre, P., 1980, Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype, Proc. Natl. Acad. Sci. USA 77: 2698.

    PubMed  Google Scholar 

  • Prajda, N., Katunuma, N., Morris, H. P., and Weber, G., 1975, Imbalance of purine metabolism in hepatomas of different growth rates as expressed in behavior of glutamine-phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase, EC 2.4.2.14), J. Biol. Chem. 250: 432.

    Google Scholar 

  • Prusiner, S., and Stadtman, E. R. (eds.), 1973, The Enzymes of Glutamine Metabolism, Academic Press, New York.

    Google Scholar 

  • Rabinovitz, M., Olson, M. E., and Greenburg, D. M., 1956, Role of glutamine in protein synthesis by the Ehrlich ascites cells, J. Biol. Chem. 231: 879.

    Google Scholar 

  • Racker, E., 1976, Why do tumor cells have a high aerobic glycolysis?, J. Cell. Physiol. 89: 697.

    PubMed  CAS  Google Scholar 

  • Raina, P. N., and Ramakrishnan, C. V., 1964, Glutaminase activity in rat tissues, Oncologia 18: 14.

    CAS  Google Scholar 

  • Rapoport, S., Rost, J., and Schultze, M., 1971, Glutamine and glutamate as respiratory substrates of rabbit reticulocytes, Eur. J. Biochem. 23: 1966.

    Google Scholar 

  • Regan, D. H., Lavietes, B. B., Regan, M. G., Demopoulos, H. B., and Morris, H. P., 1973, Glutamate-mediated respiration in tumors, J. Natl. Cancer Inst. 51: 1013.

    Google Scholar 

  • Reitzer, L. J., Wice, B. M., and Kennell, D., 1979, Evidence that glutamate, not sugar, is the major energy source for cultured HeLa cells, J. Biol. Chem. 254: 2669.

    PubMed  CAS  Google Scholar 

  • Reitzer, L. J., Wice, B. M., and Kennell, D., 1980, The pentose cycle: Control and essential function in HeLa cell nucleic acid synthesis, J. Biol. Chem. 255: 5616.

    PubMed  CAS  Google Scholar 

  • Renner, E. D., Plagemann, P. G. W., and Bernlohr, R. W., 1972, Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relation to glucose metabolism, J. Biol. Chem. 247: 5765.

    PubMed  CAS  Google Scholar 

  • Rheinwald, J. G., and Green, H., 1974, Growth of cultured mammalian cells on secondary glucose sources, Cell 2: 287.

    PubMed  CAS  Google Scholar 

  • Roberts, E., and Borges, P. R. F., 1955, Patterns of free amino acids in growing and regressing tumors, Cancer Res. 15: 697.

    PubMed  CAS  Google Scholar 

  • Roberts, E., and Simonsen, D. G., 1960, Free amino acids and similar substances in normal and neoplastic tissue, in: Amino Acids, Proteins and Cancer Biochemistry ( J. T. Edsell, ed.), pp. 127–135, Academic Press, New York.

    Google Scholar 

  • Roberts, E., Tanaka, K. K., Tanaka, T., and Simonsen, D. G., 1956, Free amino acids in growing and regressing ascites cell tumors: Host resistance and chemical agents, Cancer Res. 16: 970.

    PubMed  CAS  Google Scholar 

  • Robins, S., 1957, Textbook of Pathology, Saunders, Philadelphia.

    Google Scholar 

  • Robinson, B. H., 1971a, Transport of phosphoenolpyruvate by the tricarboxylate transporting system in mammalian mitochondria, FEBS Lett. 14: 309.

    PubMed  CAS  Google Scholar 

  • Robinson, B. H., 1971b, The role of the tricarboxylate transporting system in the production of phosphoenolpyruvate by ox liver mitochondria, FEBS Lett. 16: 267.

    PubMed  CAS  Google Scholar 

  • Romano, A. H., 1976, Is glucose transport enhanced in virus-transformed mammalian cells? A dissenting view, J. Cell. Physiol. 89: 737.

    PubMed  CAS  Google Scholar 

  • Romano, A. H., and Cornell, N. D., 1982, Transport of 6-deoxy-D-glucose and D-xylose by untransformed and SV40-transformed 3T3 cells, J. Cell. Physiol. 111: 83.

    PubMed  CAS  Google Scholar 

  • Roos, D., and Loos, J. A., 1973, Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation, Exp. Cell Res. 77: 127.

    PubMed  CAS  Google Scholar 

  • Saheki, T., and Katunuma, N., 1975, Analysis of regulatory factors for urea synthesis by isolated perfused rat-liver. 1. Urea synthesis with ammonia and glutamine as nitrogen sources, J. Biochem. 77: 659.

    PubMed  CAS  Google Scholar 

  • Salzman, N. P., Eagle, H., and Sebring, E. D., 1957, The utilization of glutamine, glutamic acid, and ammonia for the biosynthesis of nucleic acid bases in mammalian cell cultures, J. Biol. Chem. 227: 1001.

    Google Scholar 

  • Sauer, L. A., 1973, An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions, Biochem. Biophys. Res. Commun. 50: 524.

    PubMed  CAS  Google Scholar 

  • Sauer, L. A., and Dauchy, R. T., 1978, Identification and properties of the nicotinamide adenine dinucleotide (phosphate) + -dependent malic enzyme in mouse ascites tumor mitochondria, Cancer Res. 38: 1751.

    PubMed  CAS  Google Scholar 

  • Sauer, L. A., and Dauchy, R. T., 1983, Ketone body, glucose, lactic acid, and amino acid utilization by tumors and in vivo in fasted rats, Cancer Res. 43: 3497.

    PubMed  CAS  Google Scholar 

  • Sauer, L. A., Dauchy, R. T., and Nagel, W. 0., 1979, Identification of an NAD(P) -dependent “malic” enzyme in small-intestinal-mucosal mitochondria, Biochem. J. 184: 185.

    PubMed  CAS  Google Scholar 

  • Sauer, L. A., Dauchy, R. T., Nagel, W. 0., and Morris, H. P., 1980, Mitochondrial malic enzymes: Mitochondrial NAD(P) + -dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas, J. Biol. Chem. 255: 3844.

    PubMed  CAS  Google Scholar 

  • Sauer, L. A., Stayman, J. W., III, and Dauchy, R. T., 1982, Amino acid, glucose, and lactic acid utilization in vivo by rat tumors, Cancer Res. 42: 4090.

    PubMed  CAS  Google Scholar 

  • Schneider, H., Mohlen, K. H., Challier, J. C., and Dancis, J., 1979, Transfer of glutamic acid across the human placenta perfused in vitro, Br. J. Obstet. Gynaecol. 86: 299.

    PubMed  CAS  Google Scholar 

  • Schoolwerth, A. C., and Lalloue, K. F., 1980, The role of microcompartmentation in the regulation of glutamate metabolism by rat kidney mitochondria, J. Biol. Chem. 255: 3403.

    Google Scholar 

  • Schweiger, H. G., Rapoport, S. and Schozel, F., 1956, Nitrogen metabolism in erythrocyte maturation: Residual nitrogen formation and hemoglobin synthesis, Hoppe-Seylers Z. Physiol. Chem. 306: 33.

    PubMed  CAS  Google Scholar 

  • Sevdalian, D. A., Ozand, P. T., and Zielke, H. R., 1980, Increase in glutaminase activity during the growth cycle of cultured human diploid fibroblasts, Enzyme 25: 142.

    PubMed  CAS  Google Scholar 

  • Shaffer, J. B., and Felder, M. R., 1983, Turnover of cytoplasmic and mitochondrial aspartate aminotransferase isozymes in mouse liver and transplantable hepatomas, Arch. Biochem. Biophys. 223: 649.

    PubMed  CAS  Google Scholar 

  • Shank, R. P., and Aprison, M. H., 1981, Present status and significance of the glutamine cycle in neural tissue, Life Sci. 28: 837.

    PubMed  CAS  Google Scholar 

  • Shepartz, B., 1973, Regulation of Amino Acid Metabolism in Mammals, Saunders, Philadelphia. Shotwell. M. A., Kilberg, M. S., and Oxender, D. L., 1983, The regulation of neutral amino acid transport in mammalian cells, Biochim. Biophys. Acta 737: 267.

    Google Scholar 

  • Simpson, E., and Estabrook, R. W., 1969, Mitochondrial malic enzyme: The source of reduced nicotinamide adenine dinucleotide phosphate for steroid hydroxylation in bovine adrenal cortex mitochondria, Arch. Biochem. Biophys. 129: 384.

    PubMed  CAS  Google Scholar 

  • Singer, T. P., Kearney, E. B., and Kenney, W. C., 1973, Succinate dehydrogenase, Adv. Enzymol. 37: 189.

    PubMed  CAS  Google Scholar 

  • Singh, M., Singh, V. N., August, J. T., and Horecker, B. L., 1974a, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Transformation-specific changes in the activities of key enzymes of the glycolytic and hexose monophosphate shunt pathways, Arch. Biochem. Biophys. 165: 240.

    PubMed  CAS  Google Scholar 

  • Singh, V. N., Singh, M., August, J. T., and Horecker, B. L., 1974b, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Intracellular levels of glycolytic intermediates, Proc. Natl. Acad. Sci. USA 71: 4129.

    PubMed  CAS  Google Scholar 

  • Sols, A., 1976, The Pasteur effect in the allosteric era, in: Reflections on Biochemistry ( A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro, eds.), pp. 199–206, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Stanisz, J., Wice, B. R., and Kennell, D. E., 1983, Comparative energy metabolism in cultured heart muscle and HeLa cells, J. Cell. Physiol. 115: 320.

    PubMed  CAS  Google Scholar 

  • Stegink, L. D., Pitkin, R. M., Reynolds, W. A., Filer, L. J., Booz, D. P., and Brummel, M. C., 1975, Placental transfer of glutamate and its metabolites in the primate, Am. J. Obstet. Gynecol. 122: 70.

    PubMed  CAS  Google Scholar 

  • Steinberger, A., and Steinberger, E., 1966, Stimulatory effect of vitamins and glutamine on the differentiation of germ cells in rat testes organ culture grown in chemically defined media, Exp. Cell Res. 44: 429.

    PubMed  CAS  Google Scholar 

  • Stoner, G. D., and Merchant, D. J., 1972, Amino acid utilization of L-M strain mouse cells in a chemically defined medium, In Vitro 7: 330.

    PubMed  CAS  Google Scholar 

  • Sumbilla, C. M., Ozand, P. T., and Zielke, H. R., 1981, Activities of enzymes required for the conversion of 4-carbon TCA cycle compounds to 3-carbon glycolytic compounds in human diploid fibroblasts, Enzyme 26: 201.

    PubMed  CAS  Google Scholar 

  • Swierczynski, J., Scislowski, P., Aleksandrowicz, A., and Zelewski, L., 1982, NAD(P)-dependent malic enzyme activity in human term placental mitochondria, Biochem. Med. 28: 247.

    PubMed  CAS  Google Scholar 

  • Takagaki, G., Berl, S., Clarke, D. D., Purpura, D. P., and Waelsch, H., 1961, Glutamic acid metabolism in brain and liver during infusion with ammonia labelled with nitrogen-15, Nature 189: 326.

    PubMed  CAS  Google Scholar 

  • Tapia, R., 1980, Glutamine metabolism in brain, in: Glutamine: Metabolism, Enzymology and Regulation ( J. Mora and R. Palacios, eds.), pp. 285–297, Academic Press, New York.

    Google Scholar 

  • Tate, S. S., and Meister, A., 1973, Glutamine synthetases of mammalian liver and brain, in: The Enzymes of Glutamine Metabolism ( S. Prusiner, ed.), pp. 77–127, Academic Press, New York.

    Google Scholar 

  • Thomas, E. L., and Christensen, H. N., 1971, Nature of cosubstrate action of Na+ and neutral amino-acids in a transport system, J. Biol. Chem. 246: 1682.

    PubMed  CAS  Google Scholar 

  • Tiemeier, D. C., Smotkin, D., and Milman, G., 1973, Regulation of glutamine synthetase in Chinese hamster cells, in: The Enzymes of Glutamine Metabolism ( S. Prusiner, ed.), pp. 145–166, Academic Press, New York.

    Google Scholar 

  • Tildon, J. T., 1983, Glutamine: a possible energy source for the brain, in: Glutamine, Glutamate, and GABA in the Central Nervous System ( L. Hertz, E. Kyamme, E. G. McGeer, and A. Schousboe, eds.), pp. 415–429, Alan R. Liss, Inc., New York.

    Google Scholar 

  • Towler, C. M., Pugh-Humphreys, G. P., and Porteous, J. P., 1978, Characterization of columnar absorptive epithelial cells isolated from rat jejunum, J. Cell Sci. 29: 53.

    PubMed  CAS  Google Scholar 

  • Trayhurn, P., and Van Heyningen, R., 1971, Aerobic metabolism in the bovine lens, Exp. Eye Res. 12: 315.

    PubMed  CAS  Google Scholar 

  • Trayhurn, P., and Van Heyningen, R., 1973a, The metabolism of amino acids in the bovine lens, Biochem. J. 136: 67.

    PubMed  CAS  Google Scholar 

  • Trayhurn, P., and Van Heyningen, R., 19736, The metabolism of glutamine in the bovine lens: Glutamine as a source of glutamate, Exp. Eye Res. 17: 149.

    Google Scholar 

  • Tritsch, G. L., and Moore, G. E., 1962, Spontaneous decomposition of glutamine in cell culture media, Exp. Cell Res. 28: 360.

    PubMed  CAS  Google Scholar 

  • Tsoncheva, A., 1974, Some properties of isozymes of NADP-malate dehydrogenase from cortical layers of rat kidneys, Biokhimiya 39: 1172.

    CAS  Google Scholar 

  • Tsuiki, S., Sato, K., Mijagi, T., and Kikuchi, H., 1972, Isozymes of fructose 1,6-disphosphatase, glycogen synthetase, and glutamine:fructose 6-phosphate amidotransferase, Gann 13: 153.

    Google Scholar 

  • Tyrrell, J. B., and Anderson, J. N., 1971, Glycolytic and pentose phosphate pathway enzymes in jejunal mucosa: Adaptive responses to alloxan-diabetes and fasting in the rat, Endocrinology 89: 1178.

    PubMed  CAS  Google Scholar 

  • Van Slyke, D. D., Phillips, R. A., Hamilton, P. B., Archibald, R. M., Futcher, P. H., and Hiller, A., 1943, Glutamine as source material of urinary ammonia, J. Biol. Chem. 150: 481.

    Google Scholar 

  • Vina, J. R., and Williamson, D. H., 1981, Utilization of L-alanine and L-glutamine by lactating mammary gland of the rat, Biochem. J. 196: 757.

    PubMed  CAS  Google Scholar 

  • Volman-Mitchell, H., and Parsons, D. S., 1974, Distribution and activities of dicarboxylic amino acid transaminases in gastrointestinal mucosa of rat, mouse, hamster, guinea pig, chicken and pigeon, Biochim. Biophys. Acta 334: 316.

    CAS  Google Scholar 

  • Waelsch, H., 1960, An attempt at integration of structure and metabolism in the nervous system, in: Structure and Function of the Cerebral Cortex (D. B. Tower and J. P. Shade, eds.), pp. 313326, Elsevier, Amsterdam.

    Google Scholar 

  • Wanders, R. J. A., Hoek, J. B., and Tager, J. M., 1980, Origin of the ammonia found in protein-free extracts of rat-liver mitochondria and rat hepatocytes, Eur. J. Biochem. 110: 197.

    PubMed  CAS  Google Scholar 

  • Wang, T., Marquardt, C., and Foker, J., 1976, Aerobic glycolysis during lymphocyte proliferation, Nature 261: 701.

    Google Scholar 

  • Warburg, 0., 1926, Über den Stoffweschel der Tumoren, Springer-Verlag, Berlin (Translation: The Metabolism of Tumors, Arnold Constable, London, 1930 ).

    Google Scholar 

  • Warburg, 0., 1956, On the origin of cancer cells, Science 123: 309.

    Google Scholar 

  • Warburg, O., Kubowitz, F., and Christian, W., 1931, Uber die wirkung von phenylhydrazin und phenylhydroxylamin auf der stoffwechsel de roten blutzellen, Biochem. Z. 242: 170.

    CAS  Google Scholar 

  • Wasilenko, W. J., and Marchok, A. C., 1984, Pyruvate regulation of growth and differentiation in primary cultures of rat tracheal epithelial cells, Exp. Cell Res. 155: 507.

    PubMed  CAS  Google Scholar 

  • Wasilenko, W. J., and Marchok, A. C., 1985, Malic enzyme and malate dehydrogenase activities in rat tracheal epithelial cells during the progression of neoplasia, Cancer Letters 28: 35.

    PubMed  CAS  Google Scholar 

  • Watford, M., Lund, P., and Krebs, H. A., 1979a, Isolation and metabolic characteristics of rat and chicken enterocytes, Biochem. J. 178: 589.

    PubMed  CAS  Google Scholar 

  • Watford, M., Vinay, P., Lemieux, G., and Gougoux, A., 1979b, The formation of pyruvate from citric acid-cycle intermediates in kidney cortex, Biochem. Soc. Trans. 7: 753.

    PubMed  CAS  Google Scholar 

  • Watford, M., Vinay, P., Lemieux, G., and Gougoux, A., 1980, The regulation of glucose and pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea pigs, Biochem. J. 188: 741.

    PubMed  CAS  Google Scholar 

  • Wein, J., and Goetz, I. E., 1973, Asparaginase and glutaminase activities in culture media containing dialyzed fetal calf serum, In Vitro 9: 186.

    PubMed  CAS  Google Scholar 

  • Weinhouse, S., 1976, The Warburg hypothesis fifty years later, Z. Krebsforsch. Klin. Onkol. 87: 115.

    CAS  Google Scholar 

  • Wenner, C. E., 1975, Regulation of energy metabolism in normal and tumor cells, in: Cancer: A Comprehensive Treatise ( F. F. Becker, ed.), Vol. 3, pp. 389–403, Plenum Press, New York.

    Google Scholar 

  • Whittaker, P. A., and Danks, S. M., 1978, Mitochondria: Structure, Function and Assembly, Longman, London.

    Google Scholar 

  • Wice, B. M., Reitzer, L. J., and Kennell, D., 1981, The continuous growth of vertebrate cells in the absence of sugar, J. Biol. Chem. 256: 7812.

    PubMed  CAS  Google Scholar 

  • Williams, W. J., and Manson, C. A., 1958, Glutaminase of the human malignant cell, strain HeLa, J. Biol. Chem. 232: 229.

    PubMed  CAS  Google Scholar 

  • Williamson, J. R., 1976, Role of anion transport in the regulation of metabolism, in: Gluconeogenesis: Its Regulation in Mammalian Species ( R. W. Hanson and M. A. Mehlman, eds.), pp. 165–181, Wiley, New York.

    Google Scholar 

  • Williamson, J. R., and Cooper, R. H., 1980, Regulation of the citric-acid cycle in mammalian systems, FEBS Lett. 117: K73.

    PubMed  Google Scholar 

  • Windmueller, H. G., 1982, Glutamine utilization by the small intestine, Adv. Enzymol. 53:201. Windmueller, H. G., and Spaeth, A. E., 1974, Uptake and metabolism of plasma glutamine by the small intestine, J. Biol. Chem. 249: 5070.

    Google Scholar 

  • Windmueller, H. G., and Spaeth, A. E., 1980, Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats, J. Biol. Chem. 255: 107.

    PubMed  CAS  Google Scholar 

  • Wise, E. M., and Ball, E. G., 1964, Malic enzyme and lipogenesis, Proc. Natl. Acad. Sci. USA 52: 1255.

    PubMed  CAS  Google Scholar 

  • Yu, A. C., Shousbae, A., and Hertz, L., 1982, Metabolic fate of C-labeled glutamate in astrocytes in primary cultures, J. Neurochem., 39: 958.

    Google Scholar 

  • Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Cornblath, M., 1976, Growth of human diploid fibroblasts in the absence of glucose utilization, Proc. Natl. Acad. Sci. USA 73: 4110.

    PubMed  CAS  Google Scholar 

  • Zielke, H. R., Ozand, P. T., Tildon, J. T., Sevdalian, D. A., and Cornblath, M., 1978, Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts, J. Cell. Physiol. 95: 41.

    PubMed  CAS  Google Scholar 

  • Zielke, H. R., Sumbilla, C. M., Sevdalian, D. A., Hawkins, R. L., and Ozand, P. T., 1980, Lactate: A major product of glutamine metabolism by human diploid fibroblasts, J. Cell. Physiol. 104: 433.

    PubMed  CAS  Google Scholar 

  • Zielke, H. R., Sumbilla, C. M., and Ozand, P. T., 1981, Effect of glucose on aspartate and glutamate synthesis by human diploid fibroblasts, J. Cell. Physiol. 107: 251.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

McKeehan, W.L. (1986). Glutaminolysis in Animal Cells. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics