Skip to main content

The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System of Escherichia coli and Salmonella typhimurium

  • Chapter
Book cover Carbohydrate Metabolism in Cultured Cells

Abstract

Bacteria such as Escherichia coli and Salmonella typhimurium can grow in simple defined media consisting of inorganic salts and any one of a wide variety of carbon sources. But the cells must be able to respond to internal and external variations, including the depletion of nutrients, since they face continuous changes in the external environment and changing internal needs. One of the most challenging problems for a cell is to regulate and integrate its metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya, S., and Echols, H., 1966, Glucose effect and the galactose enzymes of Escherichia coli: Correlation between glucose inhibition of induction and inducer exclusion, J. Bacteriol. 92: 601–608.

    PubMed  CAS  Google Scholar 

  • Adler, J., and Epstein, W., 1974, Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis, Proc. Natl. Acad. Sci. USA 71: 2895–2899.

    Article  PubMed  CAS  Google Scholar 

  • Alaeddinoglu, N. G., and Charles, H. P., 1979, Transfer of a gene for sucrose utilization into Escherichia coli K12, and consequent failure of expression of genes for D-serine utilization, J. Gen. Microbiol. 110: 47–59.

    PubMed  CAS  Google Scholar 

  • Alexander, J. K., 1980, Suppression of defects in cyclic adenosine 3’,5’-monophosphate metabolism in Escherichia coli, J. Bacteriol. 144: 205–209.

    PubMed  CAS  Google Scholar 

  • Alexander, J. K., and Tyler, B., 1975, Genetic analysis of succinate utilization of enzyme I mutants of the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli, J. Bacteriol. 124: 252–261.

    PubMed  CAS  Google Scholar 

  • Alper, M. D., and Ames, B. N., 1978, Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: Positive selection of Salmonella typhimurium cya and crp mutants, J. Bacteriol. 133: 149–157.

    PubMed  CAS  Google Scholar 

  • Amaral, D., and Kornberg, H. L., 1975, Regulation of fructose uptake by glucose in Escherichia coli, J. Gen. Microbiol. 90: 157–168.

    PubMed  CAS  Google Scholar 

  • Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, edition 7, Microbiol. Rev. 47:180-230.

    Google Scholar 

  • Bankaitis, V. A., and Bassford, P. J., Jr., 1982, Regulation and adenylate cyclase synthesis in Escherichia coli: Studies with cya-lac operon and protein fusion strains, J. Bacteriol. 151: 1346–1357.

    PubMed  CAS  Google Scholar 

  • Begley, G. S., Hansen, D. E., Jacobson, G. R., and Knowles, J. R., 1982, Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate: glucose phosphotransferase system, Biochemistry 21: 5552–5556.

    Article  PubMed  CAS  Google Scholar 

  • Beneski, D. A., Misko, T. P., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium, J. Biol. Chem. 257: 14565–14575.

    PubMed  CAS  Google Scholar 

  • Berman, M., and Lin, E. C. C., 1971, Glycerol-specific revertants of a phosphoenolpyruvatephosphotransferase mutant: Suppression by desensitization of glycerol kinase to feedback inhibition, J. Bacteriol. 105: 113–120.

    PubMed  CAS  Google Scholar 

  • Berman, M., Zwaig, N., and Lin, E. C. C., 1970, Suppression of a pleiotropic mutant affecting glycerol dissimilation, Biochem. Biophys. Res. Commun. 38: 272–278.

    Article  PubMed  CAS  Google Scholar 

  • Beyreuther, K., Raufuss, H., Schrecker, O., and Hengstenberg, W., 1977, The phosphoenolpyruvate—dependent phosphotransferase system of Staphylococcus aureus. 1. Amino-acid sequence of the phosphocarrier protein HPr, Eur. J. Biochem. 75: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • Bitoun, R., de Reuse, H., Touati-Schwartz, D., and Danchin, A., 1983, The phosphoenolpyruvate dependent carbohydrate phosphotransferase system of Escherichia coli: Cloning of the ptsHlcrr region and studies with a pts-lac operon fusion, FEMS Microbiol. Lett. 16: 163–167.

    CAS  Google Scholar 

  • Bolshakova, T. N., Gabrielyan, T. R., Bourd, G. I., and Gershanovitch, V. N., 1978, Involvement of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system in regulation of transcription of catabolic enzymes, Eur. J. Biochem. 89: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Botsford, J. L., 1981, Cyclic nucleotides in prokaryotes, Microbiol. Rev. 45: 620–642.

    PubMed  CAS  Google Scholar 

  • Botsford, J. L., and Drexler, M., 1978, The cyclic 3’,5’-adenosine monophosphate receptor protein and regulation of cyclic 3’,5’-adenosine monophosphate synthesis in Escherichia coli, Mol. Gen. Genet. 165: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Bourd, G. I., Erlagaeva, R. S., Bolshakova, T. N., and Gershanovitch, V. N., 1975, Glucose catabolite repression in Escherichia coli K12 mutants defective in methyl-a-D-glucoside transport, Eur. J. Biochem. 53: 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Britton, P., Boronat, A., Hartley, D. A., Jones-Mortimer, M. C., Kornberg, H. L., and Pana, F., 1983, Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: Location of the gsr (tgs) and iex (crr) genes by specialized transduction, J. Gen. Microbiol. 129: 349–358.

    PubMed  CAS  Google Scholar 

  • Britton, P., Lee, L. G., Murfitt, D., Boronat, A., Jones-Mortimer, M. C., and Kornberg, H. L., 1984, Location and direction of the ptsH and pis genes on the Escherichia coli K12 genome, J. Gen. Microbiol. 130: 861–868.

    PubMed  CAS  Google Scholar 

  • Brouwer, M., Elferink, M. G. L., and Robillard, G. T., 1982, Phosphoenolpyruvate-dependent fructose phosphotransferase system of Rhodopseudomonas sphaeroides: Purification and physicochemical and immunochemical characterization of a membrane-associated enzyme I, Biochemistry 21: 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Clark, B., and Holms, W. H., 1976, Control of the sequential utilization of glucose and fructose by Escherichia coli, J. Gen. Microbiol. 95: 191–201.

    CAS  Google Scholar 

  • Cohn, M., and Horibata, K., 1959, Inhibition by glucose of the induced synthesis of the ß-galac-toside enzyme system of Escherichia coli: Analysis of maintenance, J. Bacteriol. 78: 601–612.

    PubMed  CAS  Google Scholar 

  • Cordaro, C., 1976, Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system, Annu. Rev. Genet. 10: 341–359.

    Article  PubMed  CAS  Google Scholar 

  • Cordaro, J. C., and Roseman, S., 1972, Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 112: 17–29.

    PubMed  CAS  Google Scholar 

  • Cordaro, J. C., Anderson, R. P., Grogran, E. W., Wenzel, D. J., Engler, M., and Roseman, S., 1974, Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120: 245–252.

    PubMed  CAS  Google Scholar 

  • Cordaro, J. C., Melton, T., Stratis, J. P., Atagün, M., Gladding, C., Hartman, P. E., and Roseman, S., 1976, Fosfomycin resistance: Selection method for internal and extended deletions of the phosphoenolpyruvate: sugar phosphotransferase genes of Salmonella typhimurium, J. Bacteriol. 128: 785–793.

    PubMed  CAS  Google Scholar 

  • Curtis, S. J., and Epstein, W., 1975, Phosphorylation of D-glucose in Escherichia coli mutants defective in glucose phosphotransferase, mannose phosphotransferase, and glucokinase, J. Bacteriol. 122: 1189–1199.

    PubMed  CAS  Google Scholar 

  • Deutscher, J., and Saier, M. H., Jr., 1983, ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes, Proc. Natl. Acad. Sci. USA 80: 6790–6794.

    Article  PubMed  CAS  Google Scholar 

  • Deutscher, J., Kessler, U., Alpert, C. A., and Hengstenberg, W., 1984, The bacterial phosphoenolpyruvate dependent phosphotransferase system: P-ser—HPr and its possible regulatory function, Biochemistry 23: 4455–4460.

    Article  PubMed  CAS  Google Scholar 

  • Dills, S. S., Apperson, A., Schmidt, M. R., and Saier, M. H., Jr., 1980, Carbohydrate transport in bacteria, Microbiol. Rev. 44: 385–418.

    PubMed  CAS  Google Scholar 

  • Dobrogosz, W. J., Hall, G. W., Sherba, D. K., Silva, D. O., Harman, J. G., and Melton, T., 1983, Regulatory interactions among the cya, crp and pts gene products in Salmonella typhimurium, Mol. Gen. Genet. 192: 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Durham, D. R., and Phibbs, P. V., Jr., 1982, Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa, J. Bacteriol. 149: 534–541.

    PubMed  CAS  Google Scholar 

  • Edwards, V. H., 1969, Correlations of lags in the utilization of mixed sugars in continuous fermentation, Biotechnol. Bioeng. 11: 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Elvin, C. M., and Kornberg, H. L., 1982, A mutant ß-D-glucoside transport system of Escherichia coli resistant to catabolite inhibition, FEBS Leu. 147: 137–142.

    Article  CAS  Google Scholar 

  • Entian, K.-D., 1980, Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast, Mol. Gen. Genet. 178: 633–637.

    Article  PubMed  CAS  Google Scholar 

  • Entian, K.-D., 1981, A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: Evidence for regulatory control of hexokinase PII synthesis, Mol. Gen. Genet. 184: 278–282.

    PubMed  CAS  Google Scholar 

  • Entian, K.-D., and Fröhlich, K.-U., 1984, Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression, J. Bacteriol. 158: 29–35.

    PubMed  CAS  Google Scholar 

  • Entian, K.-D., and Mecke, D., 1982, Genetic evidence for a role of hexokinase isoenzyme PII in carbon catabolite repression in Saccharomyces cerevisiae, J. Biol. Chem. 257: 870–874.

    PubMed  CAS  Google Scholar 

  • Epstein, W., Jewett, S., and Fox, C. F., 1970, Isolation and mapping of phosphotransferase mutants in Escherichia coli, J. Bacteriol. 104: 793–797.

    PubMed  CAS  Google Scholar 

  • Erni, B., Trachsel, H., Postma, P. W., and Rosenbuch, J. P., 1982, Bacterial phosphotransferase system. Solubilization and purification of the glucose-specific enzyme II from membranes of Salmonella typhimurium, J. Biol. Chem. 257: 13726–13730.

    PubMed  CAS  Google Scholar 

  • Ferenci, T., and Kornberg, H. L., 1974, The role of phosphotransferase syntheses of fructose 1-phosphate and fructose 6-phosphate in the growth of Escherichia coli on fructose, Proc. R. Soc. London Ser. B 187: 105–119.

    Article  CAS  Google Scholar 

  • Feucht, B. U., and Saier, M. H., Jr., 1980, Fine control of adenylate cyclase by the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 141: 603–610.

    PubMed  CAS  Google Scholar 

  • Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate dependent kinase system in (3-glucoside catabolism in Escherichia coli, Proc. Natl. Acad. Sci. USA 59: 988–995.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, A. D. E., and Yamazaki, H., 1982, Significance of 3-galactosidase repression in glucose inhibition of lactose utilization in Escherichia coli, Curr. Microbiol. 7: 241–244.

    Article  CAS  Google Scholar 

  • Gachelin, G., 1970, Studies on the a-methylglucoside permease of Escherichia coli. A two-step mechanism for the accumulation of a-methylglucoside 6-phosphate, Eur. J. Biochem. 16: 342–357.

    Article  PubMed  CAS  Google Scholar 

  • Garnak, M., and Reeves, H. C., 1979, Purification and properties of phosphorylated isocitrate dehydrogenase from Escherichia coli, J. Biol. Chem. 254: 7915–7920.

    PubMed  CAS  Google Scholar 

  • Gay, P., Cordier, P., Marquet, M., and Delobbe, A„ 1973, Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations, Mol. Gen. Genet. 121: 355–368.

    Article  PubMed  CAS  Google Scholar 

  • Gershanovitch, V. N., Bourd, G. I., Jurovitzkaya, N. V., Skavronskaya, A. G., Klyutchova, V. V., and Shabolenko, V. P., 1967, ß-Galactosidase induction in cells of Escherichia coli not utilizing glucose, Biochim. Biophys. Acta 134: 188–190.

    Google Scholar 

  • Gershanovitch, V. N., Ilyina, T. S., Rusina, O. Y., Yourovitskaya, N. V., and Bolshakova, T. N., 1977, Repression of inducible enzyme synthesis in a mutant of Escherichia coli K12 deleted for the ptsH gene, Mol. Gen. Genet. 153: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.

    Article  PubMed  CAS  Google Scholar 

  • Glesyna, M. L., Bolshakova, T. N., and Gershanovitch, V. N., 1983, Effect of ptsl and ptsH mutations on initiation of transcription of the Escherichia coli lactose operon, Mol. Gen. Genet. 190: 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Goldbeter, A., and Koshland, D. E., Jr., 1981, An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl. Acad. Sci. USA 78: 6840–6844.

    Article  PubMed  CAS  Google Scholar 

  • Guidi-Rontani, C., and Gicquel-Sanzey, B., 1981, Expression of the maltose regulon in strain lacking the cyclic AMP receptor protein, FEMS Microbiol. Lett. 10: 383–387.

    Article  CAS  Google Scholar 

  • Guidi-Rontani, C., Danchin, A., and Ullmann, A., 1980, Catabolite repression in Escherichia coli mutants lacking cyclic AMP receptor protein, Proc. Natl. Acad. Sci. USA 77: 5799–5801.

    Article  PubMed  CAS  Google Scholar 

  • Guiso, N., and Blazy, B., 1980, Regulatory aspects of the cyclic AMP receptor protein in Escherichia coli K-12, Biochem. Biophys. Res. Commun. 94: 278–283.

    Article  PubMed  CAS  Google Scholar 

  • Hagihara, H., Wilson, T. H., and Lin, E. C. C., 1963, Studies on the glucose-transport system in Escherichia coli with a-methylglucoside as substrate, Biochim. Biophys. Acta 78: 505–515.

    Article  Google Scholar 

  • Haguenauer, R., and Kepes, A., 1971, The cycle of renewal of intracellular a-methyl glucoside accumulation by the glucose permease of E. coli, Biochimie 53: 99–107.

    Article  CAS  Google Scholar 

  • Harman, J. G., and Botsford, J. L., 1979, Synthesis of 3’:5’-cyclic monophosphate in Salmonella typhimurium growing in continuous culture, J. Gen. Microbiol. 110: 243–246.

    PubMed  CAS  Google Scholar 

  • Harte, M. J., and Webb, F. C., 1967, Utilization of mixed sugars in continuous fermentation. II, Biotechnol. Bioeng. 9: 205–221.

    Article  CAS  Google Scholar 

  • Harwood, J. P., and Peterkofsky, A., 1975, Glucose-sensitive adenylate cyclase in toluene-treated cells of Escherichia coil B, J. Biol. Chem. 250: 4656–4662.

    PubMed  CAS  Google Scholar 

  • Harwood, J. P., Gazdar, C., Prasad, C., Peterkofsky, A., Curtis, S. J., and Epstein, W., 1976, Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coil, J. Biol. Chem. 251: 2462–2468.

    PubMed  CAS  Google Scholar 

  • Heller, K. B., Lin, E. C. C., and Wilson, T. H., 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol. 144, 274–278.

    PubMed  CAS  Google Scholar 

  • Hoffee, P., Englesberg, E., and Lamy, F., 1964, The glucose permease system in bacteria, Biochim. Biophys. Acta 79: 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Hommes, R. W. J., Postma, P. W., Neijssel, O. M., Tempest, D. W., Dokter, P., and Duine, J. A., 1984, Evidence of a quinoprotein glucose dehydrogenase apoenzyme in several strains of Escherichia coli, FEMS Microbiol. Lett. 24: 329–333.

    Article  CAS  Google Scholar 

  • Huber, R. E., Pisko-Dubienski, R., and Hurlburt, K. L., 1980, Immediate stoichiometric appearance of ß-galactosidase products in the medium of Escherichia coli incubated with lactose, Biochem. Biophys. Res. Commun. 96: 656–661.

    Article  PubMed  CAS  Google Scholar 

  • Hudig, H., and Hengstenberg, W., 1980, The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS). Solubilisation and kinetic parameters of the glucose-specific membrane-bound enzyme II component of Streptococcus faecalis, FEBS Lett. 114: 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen, T. S., and Cohen, P., 1983, Protein phosphatases: Properties and role in cellular regulation, Science 221: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Jablonski, E. G., Brand, L., and Roseman, S., 1983, Sugar transport by the bacterial phosphotransferase system. Preparation of a fluorescein derivative of the glucose-specific phosphocarrier protein IIIGIC and its binding to the phosphocarrier protein HPr, J. Biol. Chem. 258: 9690–9699.

    PubMed  CAS  Google Scholar 

  • Jacobson, G. R., Lee, C. A., and Saier, M. H., Jr., 1979, Purification of the mannitol-specific enzyme II of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 254: 249–252.

    PubMed  CAS  Google Scholar 

  • Jacobson, G. R., Lee, C. A., Leonard, J. E., and Saier, M. H., Jr., 1983a, Mannitol-specific enzyme II of the bacterial phosphotransferase system. I. Properties of the purified permease, J. Biol. Chem. 258: 10748–10756.

    PubMed  CAS  Google Scholar 

  • Jacobson, G. R., Kelly, D. M., and Finlay, D. R., 1983b, The intramembrane topography of the mannitol-specific enzyme II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 258: 2955–2959.

    PubMed  CAS  Google Scholar 

  • Jin, R. Z., and Lin, E. C. C., 1984, An inducible phosphoenolpyruvate: dihydroxyacetone phosphotransferase system in Escherichia coil, J. Gen. Microbiol. 130: 83–88.

    PubMed  CAS  Google Scholar 

  • Jones-Mortimer, M. C., and Kornberg, H. L., 1974, Genetical analysis of fructose utilization by Escherichia coli, Proc. R. Soc. London Ser. B 187: 121–131.

    Article  CAS  Google Scholar 

  • Jones-Mortimer, M. C., and Kornberg, H. L., 1980, Amino-sugar transport systems of Escherichia coli K12, J. Gen. Microbiol. 117: 369–376.

    PubMed  CAS  Google Scholar 

  • Joseph, E., Bernsley, C., Guiso, N., and Ullmann, A., 1982, Multiple regulation of the activity of adenylate cyclase in Escherichia coli, Mol. Gen. Genet. 185: 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1968, The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli, J. Biol. Chem. 243: 3711–3724.

    PubMed  CAS  Google Scholar 

  • Kalachev, I. Y., Gershanovitch, V. N., and Bourd, G. I., 1980, Transmembrane phosphorylation of a-methylglucoside and regulation of the activity of 3-galactoside permease in the bacterium E. coli K12, Biokhimiya 45: 873–882.

    CAS  Google Scholar 

  • Kalachev, I. Y., Umyaroz, A. M., and Bourd, G. I., 1981, Interaction of membrane transport proteins in E. coil K12, Biokhimiya 46: 732–743.

    CAS  Google Scholar 

  • Kalbitzer, H. R., Hengstenberg, W., Rösch, P., Muss, P., Bernsmann, P., Engelmann, R., Dörschug, M., and Deutscher, J., 1982, HPr proteins of different microorganisms studied by hydrogen-1 high-resolution nuclear resonance: Similarities of structures and mechanism, Biochemistry 21: 2879–2885.

    Article  PubMed  CAS  Google Scholar 

  • Kepes, A., 1960, Etudes cinétiques sur la galactoside-permease d’Escherichia coli, Biochim. Biophys. Acta 40: 70–84.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1964, The role of permease in transport, Biochim. Biophys. Acta 79: 177–200.

    PubMed  CAS  Google Scholar 

  • Kolb, A., Spassky, A., Chapon, C., Blazy, B., and Buc, H., 1983, On the different binding affinities of CRP at the lac, gal and malT promoter regions, Nucleic Acids Res. 11: 7833–7852.

    Article  PubMed  CAS  Google Scholar 

  • Konings, W. N., and Robillard, G. T., 1982, Physical mechanism for regulation of proton solute transport in Escherichia coli, Proc. Natl. Acad. Sci. USA 79: 5480–5484.

    Article  PubMed  CAS  Google Scholar 

  • Koop, A. H., Hartley, M., and Bourgeois, S., 1984, Analysis of the cya locus of Escherichia coli, Gene 28: 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Komberg, H. L., and Reeves, R. E., 1972. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli, Biochem. J. 128: 1339–1344.

    Google Scholar 

  • Komberg, H. L., and Riordan, C., 1976, Uptake of galactose into Escherichia coli by facilitated diffusion, J. Gen. Microbiol. 94: 75–89.

    Google Scholar 

  • Kornberg, H. L., and Watts, P. D., 1978, Roles of crr-gene products in regulating carbohydrate uptake by Escherichia coli, FEBS Lett. 89: 329–332.

    Article  CAS  Google Scholar 

  • Kornberg, H. L., and Watts, P. D., 1979, tgs and crr: Genes involved in catabolite inhibition and inducer exclusion in Escherichia coli, FEBS Lett. 104: 313–316.

    Google Scholar 

  • Komberg, H. L., Watts, P. D., and Brown, K., 1980, Mechanisms of “inducer exclusion” by glucose, FEBS Lett. 117 (Suppl.): K28 - K36.

    Article  Google Scholar 

  • Koshland, D. E., Jr., Goldbeter, A., and Stock, J. B., 1982, Amplification and adaptation in regulatory and sensory systems, Science 217: 220–225.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Iuchi, S., Fujisawa, A., and Tanaka, S., 1979, Separation of four components of the phosphoenolpyruvate: glucose phosphotransferase system in Vibrio parahaemolyticus, Microbiol. Immunol. 23: 131–146.

    PubMed  CAS  Google Scholar 

  • Kukuruzinska, M. A., Harrington, W. F., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Studies on the molecular weight and association of enzyme I, J. Biol. Chem. 257: 14470–14476.

    PubMed  CAS  Google Scholar 

  • Kundig, W., and Roseman, S., 1971, Sugar transport. II. Characterization of constitutive membrane-bound enzymes II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246: 1407–1418.

    PubMed  CAS  Google Scholar 

  • Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. USA 52: 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. A., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene, J. Biol. Chem. 258: 10761–10767.

    PubMed  CAS  Google Scholar 

  • Lee, C. A., Jacobson, G. R., and Saier, M. H., Jr., 1981, Plasmid-directed synthesis of enzymes required for D-mannitol transport and utilization in Escherichia coli, Proc. Natl. Acad. Sci. USA 78: 7336–7340.

    Article  PubMed  CAS  Google Scholar 

  • Lee, L. G., Britton, P., Pana, F., Boronat, A., and Kornberg, H. L., 1982, Expression of the ptsH+ gene of Escherichia coli cloned on plasmid pBR322: A convenient means for obtaining the histidine-containing carrier protein HPr, FEBS Lett. 149: 288–292.

    Article  PubMed  CAS  Google Scholar 

  • Lengeler, J., 1975a, Mutations affecting transport of the hexitols D-mannitol, o-glucitol, and galactitol in Escherichia coli K-12: Isolation and mapping, J. Bacteriol. 124: 26–38.

    PubMed  CAS  Google Scholar 

  • Lengeler, J., 1975b, Nature and properties of hexitol transport systems in Escherichia coli, J. Bacteriol. 124: 39–47.

    PubMed  CAS  Google Scholar 

  • Lengeler, J., and Steinberger, H., 1978a, Analysis of the regulatory mechanisms controlling the activity of the hexitol transport systems in Escherichia coli K12, Mol. Gen. Genet. 167: 75–82.

    PubMed  CAS  Google Scholar 

  • Lengeler, J., and Steinberger, H., 1978b, Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12, Mol. Gen. Genet. 164: 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Lengeler, J., Auburger, A.-M., Mayer, R., and Pecher, A., 1981, The phosphoenolpyruvatedependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K12, Mol. Gen. Genet. 183: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Lengeler, J., Mayer, R. J., and Schmid, K., 1982, The phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli, J. Bacteriol. 151: 468–471.

    PubMed  CAS  Google Scholar 

  • Leonard, J. E., and Saier, M. H., Jr., 1983, Mannitol-specific enzyme II of the bacterial phosphotransferase system. II. Reconstitution of vectorial transphosphorylation in phospholipid vesicles. J. Biol. Chem. 258: 10757–10760.

    PubMed  CAS  Google Scholar 

  • Lin, E. C. C., 1970, The genetics of bacterial transport systems, Annu. Rev. Genet. 4: 225–262.

    Article  PubMed  CAS  Google Scholar 

  • Link, C. D., and Reiner, A., 1982, Inverted repeats surround the ribitol—arabitol genes of E. coli C, Nature 298: 94–96.

    Article  PubMed  CAS  Google Scholar 

  • Link, C. D., and Reiner, A. M., 1983, Genotypic exclusion: A novel relationship between the ribitol—arabitol and galactitol genes of E. coli, Mol. Gen. Genet. 189: 337–339.

    Article  PubMed  CAS  Google Scholar 

  • Magasanik, B., 1970, Glucose effects: Inducer exclusion and repression, in: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 189–219, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mattoo, R. L., and Waygood, E. B., 1983, Determination of the levels of HPr and enzyme I of the phosphoenolpyruvate—sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium, Can. J. Biochem. Cell. Biol. 61: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Mattoo, R. L., Khandelval, R. L., and Waygood, E. B., 1984, Isoelectrophoretic separation and the detection of soluble proteins containing acid-labile phosphate: Use of the phosphoenolpyruvate: sugar phosphotransferase system as a model system for N’-P-histidine-and N3-P-histidinecontaining proteins, Anal. Biochem. 139: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Meadow, N. D., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific protein (IIIGIc) from Salmonella typhimurium, J. Biol. Chem. 257: 14526–14537.

    PubMed  CAS  Google Scholar 

  • Meadow, N. D., Saffen, D. W., Dottin, R. P., and Roseman, S., 1982a, Molecular cloning of the crr gene and evidence that it is the structural gene for IIIGac, a phosphocarrier protein of the bacterial phosphotransferase system, Proc. Natl. Acad. Sci. USA 79: 2528–2532.

    Article  PubMed  CAS  Google Scholar 

  • Meadow, N. D., Rosenberg, J. M., Pinkert, H. M., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Evidence that crr is the structural gene for the Salmonella typhimurium glucose-specific phosphocarrier protein IIIG1c, J. Biol. Chem. 257: 14538–14542.

    PubMed  CAS  Google Scholar 

  • Misset, O., and Robillard, G. T., 1982, Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: Mechanism of phosphoryl-group transfer from phosphoenolpyruvate to HPr, Biochemistry 21: 3136–3142.

    CAS  Google Scholar 

  • Misset, O., Brouwer, M., and Robillard, G. T., 1980, Escherichia coli phosphoenolpyruvatedependent phosphotransferase system. Evidence that the dimer is the active form of enzyme I, Biochemistry 19: 883–890.

    Article  PubMed  CAS  Google Scholar 

  • Misset, O., Blaauw, M., Postma, P. W., and Robillard, G. T., 1983, Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanisms of the transmembrane sugar translocation and phosphorylation, Biochemistry 22: 6163–6170.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, W. J., Misko, T. P., and Roseman, S., 1982, Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose), J. Biol. Chem. 257: 14553–14564.

    PubMed  CAS  Google Scholar 

  • Nelson, S. O., and Postma, P. W., 1984, Interactions in vivo between of the phosphoenolpyru-vate: sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium, Eur. J. Biochem. 139: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, S. O., Scholte, B. J., and Postma, P. W., 1982, Phosphoenolpyruvate: sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium, J. Bacteriol. 150: 604–615.

    PubMed  CAS  Google Scholar 

  • Nelson, S. O., Wright, J. K., and Postma, P. W., 1983, The mechanism of inducer exclusion: Direct interaction between purified IIIGIc of the phosphoenolpyruvate: sugar phosphotransferase system and the lactose carrier of Escherichia coli, EMBO J. 2: 715–720.

    Google Scholar 

  • Nelson, S. O., Schuitema, A. R. J., Benne, R., van der Ploeg, L. H. T., Plijter, J. J., Aan, F., and Postma, P. W., 1984a, Molecular cloning, sequencing and expression of the crr gene: The structural gene for IIIGIc of the bacterial PEP: glucose phosphotransferase system, EMBO J. 3: 1587–1593.

    Google Scholar 

  • Nelson, S. O., Lengeler, J., and Postma, P. W., 1984b, The role of of the PEP: glucose phosphotransferase system in inducer exclusion in Escherichia coli, J. Bacteriol. 160: 360–364.

    CAS  Google Scholar 

  • Nestler, E. J., and Greengard, P., 1983, Protein phosphorylation in the brain, Nature 305: 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus, J. M., and Wright, J. K., 1983, Chemical modification of the lactose carrier of Escherichia coli by plumbagin, phenyl arsinoxide or diethylpyrocarbonate affects the binding of galactoside, Eur. J. Biochem. 137: 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R., 1981, Purification and reconstitution of functional lactose carrier from Escherichia coli, J. Biol. Chem. 256: 11804–11808.

    CAS  Google Scholar 

  • Neyssel, O. M., Tempest, D. W., Postma, P. W., Duine, J. A., and Frank Jzn, J., 1983, Glucose metabolism by K ± -limited Klebsiella aerogenes: Evidence for the involvement of a quinoprotein glucose dehydrogenase, FEMS Microbiol. Lett. 20: 35–39.

    Article  Google Scholar 

  • Niaudet, B., Gay, P., and Dedonder, R., 1975, Identification of the structural gene of the PEPphosphotransferase enzyme I in Bacillus subtilis Marburg, Mol. Gen. Genet. 136: 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Niwano, M., and Taylor, B. L., 1982, Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates, Proc. Natl. Acad. Sci. USA 79: 11–15.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. W., Neyssel, O. M., and Tempest, D. W., 1980, Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat cultures, J. Gen. Microbiol. 116: 305–314.

    PubMed  Google Scholar 

  • Okada, T., Ueyama, K., Niiya, S., Kanazawa, H., Futai, M., and Tsuchiya, T., 1981, Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli, J. Bacteriol. 146: 1030–1037.

    CAS  Google Scholar 

  • Osumi, T., and Saier, M. H., Jr., 1982, Regulation of lactose permease activity by the phosphoenolpyruvate: sugar phosphotransferase system: Evidence for direct binding of the glucose-specific enzyme III to the lactose permease, Proc. Natl. Acad. Sci. USA 79: 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  • Paigen, K., and Williams, B., 1970, Catabolite repression and other control mechanisms in carbohydrate utilization, Adv. Microbiol. Physiol. 4: 251–324.

    Article  CAS  Google Scholar 

  • Pana, F., Jones-Mortimer, M. C., and Kornberg, H. L., 1983, Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: The nature of the iex (crr) and gsr (tgs) mutations, J. Gen. Microbiol. 129: 337–348.

    Google Scholar 

  • Pastan, I., and Perlman, R. L., 1969, Repression of {3-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli: Repression in the absence of glucose phosphorylation, J. Biol. Chem. 244: 5836–5842.

    PubMed  CAS  Google Scholar 

  • Peri, K. G., Kornberg, H. L., and Waygood, E. B., 1984, Evidence for the phosphorylation of enzyme IlGucose of the phosphoenolpyruvate sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium, FEBS Leu. 178: 55–58.

    Article  Google Scholar 

  • Perret, J., and Gay, P., 1979, Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvatefructose 1-phosphotransferase system of Bacillus subtilis, Eur. J. Biochem. 102: 237–246.

    Article  CAS  Google Scholar 

  • Peterkofsky, A., and Gazdar, C., 1973, Measurements of rates of adenosine 3’:5’-cyclic monophosphate synthesis in intact Escherichia coli B, Proc. Natl. Acad. Sci. USA 70: 2149–2152.

    Article  PubMed  CAS  Google Scholar 

  • Peterkofsky, A., and Gazdar, C., 1975, Interaction of enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system with adenylate cyclase of Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 2920–2924.

    Article  CAS  Google Scholar 

  • Postma, P. W., 1976, Involvement of the phosphotransferase system in galactose transport in Salmonella typhimurium, FEBS Leu. 61: 49–53.

    Article  CAS  Google Scholar 

  • Postma, P. W., 1977, Galactose transport in Salmonella typhimurium, J. Bacteriol. 129: 630–639.

    CAS  Google Scholar 

  • Postma, P. W., 1981, Defective enzyme II-BGlue°se of the phosphoenolpyruvate: sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium, J. Bacteriol. 147: 382–389.

    CAS  Google Scholar 

  • Postma, P. W., 1982, Regulation of sugar transport in Salmonella ryphimurium, Ann. Microbiol. 133A: 261–267.

    CAS  Google Scholar 

  • Postma, P. W., and Lengeler, J. W., 1985, Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria, Microbiol Rev. 49: 232–269.

    PubMed  CAS  Google Scholar 

  • Postma, P. W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate:sugar phosphotransferase system, Biochim. Biophys. Acta 457: 213–257.

    CAS  Google Scholar 

  • Postma, P. W., and Scholte, B. J., 1979, Regulation of sugar transport in Salmonella typhimurium, in: Function and Molecular Aspects of Biomembrane Transport ( E. Quagliariello, F. Palmieri, S. Papa, and M. Klingenberg, eds.), pp. 249–257, Elsevier, Amsterdam.

    Google Scholar 

  • Postma, P. W., and Stock, J. B., 1980, Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation, J. Bacteriol. 141: 476–484.

    PubMed  CAS  Google Scholar 

  • Postma, P. W., and van Thienen, G. M., 1978, Energization of sugar transport in Salmonella typhimurium, in: The Proton and Calcium Pumps ( M. Avron, G. F. Azzone, J. C. Metcalfe, E. Quagliariello, and N. Siliprandi, eds.), pp. 149–159, Elsevier, Amsterdam.

    Google Scholar 

  • Postma, P. W., Schuitema, A., and Kwa, C., 1981, Regulation of methyl ß-galactoside permease activity in pts and crr mutants of Salmonella typhimurium, Mol. Gen. Genet. 181: 448–453.

    Article  CAS  Google Scholar 

  • Postma, P. W., Neyssel, O. M., and van Ree, R., 1982, Glucose transport in Salmonella typhimurium and Escherichia coli, Eur. J. Biochem. 123: 113–119.

    CAS  Google Scholar 

  • Postma, P. W., Epstein, W., Schuitema, A. R. J., and Nelson, S. O., 1984, Interaction between IIIG’. of the PEP: sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium, J. Bacteriol. 158: 351–353.

    CAS  Google Scholar 

  • Reizer, J., and Saier, M. H., Jr., 1983, Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes, J. Bacteriol. 156: 236–242.

    CAS  Google Scholar 

  • Reizer, J., Novotny, M. J., Panos, C., and Saier, M. H., Jr., 1983, Mechanism of inducer expulsion in Streptococcus pyogenes: A two-step process activated by ATP, J. Bacteriol. 156: 354–361.

    PubMed  CAS  Google Scholar 

  • Reizer, J., Novotny, M. J., Stuiver, I., and Saier, M. H., Jr., 1984, Regulation of glycerol uptake by the phosphoenolpyruvate: sugar phosphotransferase system in Bacillus subtilis, J. Bacteriol. 159: 243–250.

    CAS  Google Scholar 

  • Rephaeli, A. W., and Saier, M. H., Jr., 1978, Kinetic analyses of the sugar phosphate: sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system, J. Biol. Chem. 253: 7595–7597.

    PubMed  CAS  Google Scholar 

  • Rephaeli, A. W., and Saier, M. H., Jr., 1980a, Substrate specificity and kinetic characterization of sugar uptake and phosphorylation, catalyzed by the phosphotransferase system in Salmonella typhimurium, J. Biol. Chem. 255: 8585–8591.

    CAS  Google Scholar 

  • Rephaeli, A. W., and Saier, M. H., Jr., 1980b, Regulation of genes coding for enzyme constituents of the bacterial phosphotransferase system, J. Bacteriol. 141: 658–663.

    PubMed  CAS  Google Scholar 

  • Reynolds, A. E., Felton, J., and Wright, A., 1981, Insertion of DNA activates the cryptic bgl operon in E. coli K12, Nature 293: 625–629.

    Article  PubMed  CAS  Google Scholar 

  • Robillard, G. T., 1982, The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport system, Mol. Cell. Biochem. 46: 3–24.

    Article  PubMed  CAS  Google Scholar 

  • Robillard, G. T., and Konings, W. N., 1981, Physical mechanism for regulation of phosphoenolpyruvate-dependent glucose transport activity in Escherichia coli, Biochemistry, 20: 5025–5032.

    CAS  Google Scholar 

  • Robillard, G. T., and Konings, W. N., 1982, A hypothesis for the role of dithiol—disulfide interchange in solute transport and energy-transducing processes, Eur. J. Biochem. 127: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Robillard, G. T., Dooyewaard, G., and Lolkema, J., 1979, Escherichia coli phosphoenolpyruvate dependent phosphotransferase system. Complete purification of enzyme I by hydrophobic interaction chromatography, Biochemistry 18: 2984–2989.

    CAS  Google Scholar 

  • Roehl, R. A., and Vinopal, T., 1980, Genetic locus, distant from ptsM, affecting enzyme IIA/IIB function in Escherichia coli K-12, J. Bacteriol. 142: 120–130.

    PubMed  CAS  Google Scholar 

  • Rose, S. P., and Fox, C. F., 1971, The 3-glucoside system of Escherichia coli. II. Kinetic evidence for a phosphoryl-enzyme II intermediate. Biochem. Biophys. Res. Commun. 45: 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Rotman, B., Ganesan, A. K., and Guzman, R., 1968, Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities, J. Mol. Biol. 36: 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Roy, A., Haziza, C., and Danchin, A., 1983a, Regulation of adenylate cyclase synthesis in Escherichia coli: Nucleotide sequence of the control region, EMBO J. 2: 791–797.

    Google Scholar 

  • Roy, A., Danchin, A., Joseph, E., and Ullmann, A., 1983b, Two functional domains in adenylate cyclase of Escherichia coli, J. Mol. Biol. 165: 197–202.

    CAS  Google Scholar 

  • Rusina, O. Y., and Gershanovitch, V. N., 1983, Mapping of mutations within genes coding for enzyme I and HPr protein of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K-12. II. Mapping of ptsH mutations within the gene, Genetika 19: 397–405.

    PubMed  CAS  Google Scholar 

  • Rusina, O. Y., and Gershanovitch, V. N., 1983, Mapping of mutations within genes coding for enzyme I and HPr protein of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli K-12. II. Mapping of ptsH mutations within the gene, Genetika 19: 397405.

    Google Scholar 

  • Saier, M. H., Jr., 1977, Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: Structural, functional and evolutionary interrelationships, Bacteriol. Rev. 41: 856–871.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Feucht, B. U., 1975, Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium, J. Biol. Chem. 250: 7078–7080.

    CAS  Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1972, Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 247: 972–975.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1976a, Sugar transport. The crr mutation: Its effect on repression of enzyme synthesis, J. Biol. Chem. 251: 6598–6605.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Roseman, S., 1976b, Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 251: 6606–6615.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., and Stiles, C. D., 1975, Molecular Dynamics in Biological Membranes, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1970, The physiological behaviour of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system, J. Biol. Chem. 245: 5870–5873.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Young, W. S., and Roseman, S., 1971a, Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system, J. Biol. Chem. 246: 5838–5840.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Feucht, B. U., and Roseman, S., 1971b, Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria, J. Biol. Chem. 246: 7819–7821.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Bromberg, F. G., and Roseman, S., 1973, Characterization of constitutive galactose permease mutants in Salmonella typhimurium, J. Bacteriol, 113: 512–514.

    CAS  Google Scholar 

  • Saier, M. H., Jr., Feucht, B. U., and McCaman, M. T., 1975, Regulation of intracellular adenosine cyclic 3’:5’-monophosphate levels in Escherichia coli and Salmonella typhimurium: Evidence for energy-dependent excretion of the cyclic nucleotide, J. Biol. Chem. 250: 7593–7601.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1976, Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 251: 6584–6597.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Feucht, B. U., and Mora, W. K., 1977a, Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the enzyme II complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 252: 8899–8907.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Cox, D. F., and Moczydlowski, E. G., 1977b, Sugar phosphate: sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate: sugar phosphotransferase system in membrane vesicles of Escherichia coli, J. Biol. Chem. 252: 8908–8916.

    CAS  Google Scholar 

  • Saier, M. H., Jr., Straud, H., Massman, L. S., Judice, J. J., Newman, M. J., and Feucht, B. U., 1978, Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose and lactose transport systems from regulation by the phosphoenolpyruvate: sugar phosphotransferase system, J. Bacteriol. 133: 1358–1367.

    PubMed  CAS  Google Scholar 

  • Saier, M. H., Jr., Keeler, D. K., and Feucht, B. U., 1982, Physiological desensitization of carbohydrate permeases and adenylate cyclase to regulation by the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli and Salmonella typhimurium, J. Biol. Chem. 257: 2509–2517.

    CAS  Google Scholar 

  • Saier, M. H., Jr., Novotny, M. J., Comeau-Fuhrman, D., Osumi, T., and Desai, J. D., 1983, Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIoc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium, J. Bacteriol. 155: 1351–1357.

    CAS  Google Scholar 

  • Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium: Edition VI, Microbiol. Rev. 47: 410–453.

    PubMed  CAS  Google Scholar 

  • Sarno, N. V., Tenn, L. G., Desai, A., Chin, A. M., Grenier, F. C., and Saier, M. H., Jr., 1984, Genetic evidence for glucitol-specific enzyme III, an essential phosphocarrier protein of the Salmonella typhimurium glucitol phosphotransferase system, J. Bacteriol. 157: 953–955.

    PubMed  CAS  Google Scholar 

  • Schaefler, S., 1967, Inducible system for the utilization of 0-glucoside in Escherichia coli, J. Bacteriol. 93: 254–263.

    CAS  Google Scholar 

  • Scholte, B. J., and Postma, P. W., 1980, Mutation in the crp gene of Salmonella typhimurium which interferes with inducer exclusion, J. Bacteriol. 141: 751–757.

    PubMed  CAS  Google Scholar 

  • Scholte, B. J., and Postma, P. W., 1981, Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium, Eur. J. Biochem. 114: 51–58.

    Article  CAS  Google Scholar 

  • Scholte, B. J., Schuitema, A. R., and Postma, P. W., 1981, Isolation of IIIGIC of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium, J. Bacteriol. 148: 257–264.

    CAS  Google Scholar 

  • Scholte, B. J., Schuitema, A. R., and Postma, P. W., 1982, Characterization of factor in catabolite repression resistant (crr) mutants of Salmonella typhimurium, J. Bacteriol. 149: 576–586.

    CAS  Google Scholar 

  • Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973, Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248: 932–940.

    CAS  Google Scholar 

  • Slater, A. C., Jones-Mortimer, M. C., and Kornberg, H. L., 1981, L-Sorbose phosphorylation in Escherichia coli K-12, Biochim. Biophys. Acta 646: 365–367.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, E., Miyai, K., and Lin, E. C. C., 1973, Membrane translocation of mannitol in Escherichia coli without phosphorylation, J. Bacteriol. 114: 723–728.

    PubMed  CAS  Google Scholar 

  • Stock, J. B., Waygood, E. B., Meadow, N. D., Postma, P. W., and Roseman, S., 1982, Sugartransport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system, J. Biol. Chem. 257: 14543–14552.

    PubMed  CAS  Google Scholar 

  • Tanaka, S., and Lin, E. C. C., 1967, Two classes of pleiotropic mutants of A. aerogenes lacking components of a PEP phosphotransferase system, Proc. Natl. Acad. Sci. USA 57: 913–919.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Lerner, S. A., and Lin, E. C. C., 1967, Replacement of a phosphoenolpyruvatedependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J. Bacteriol. 93: 642–648.

    PubMed  CAS  Google Scholar 

  • Tyler, B., and Magasanik, B., 1970, Physiological basis of transient repression of catabolic enzymes in Escherichia coli, J. Bacteriol. 102: 411–422.

    CAS  Google Scholar 

  • Ullmann, A., and Danchin, A., 1983, Role of cyclic AMP in bacteria, Adv. Cyclic Nucleotide Res. 15: 32–53.

    Google Scholar 

  • Umyarov, A. M., Voloshin, A. G., Bolshakova, T. N., and Gershanovitch, V. N., 1978, Effect of ptsl and ptsH gene dosages on manifestation of glucose catabolite repression of ß-galactosidase synthesis in Escherichia coli K12, FEBS Lett. 96: 31–33.

    Article  PubMed  CAS  Google Scholar 

  • Voloshin, A. G., Shulgina, M. V., and Bourd, G. I., 1981, Insensitivity of the Escherichia coli K12 adenylate cyclase to mannose under the conditions of catabolite repression, FEMS Microbiol. Lett. 10: 291–293.

    Article  CAS  Google Scholar 

  • Wagner, E. F., Fabricant, J. D., and Schweiger, M., 1979, A novel ATP-driven glucose transport system in Escherichia coli, Eur. J. Biochem. 102: 231–236.

    CAS  Google Scholar 

  • Walter, R. W., Jr., and Anderson, R. L., 1973, Evidence that the inducible phosphoenolpyruvate: D-fructose 1-phosphate phosphotransferase system of Aerobacter aerogenes does not require “HPr, ” Biochem. Biophys. Res. Commun. 52: 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. Y. J., and Koshland, D. E., Jr., 1978, Evidence for protein kinase activities in the prokaryote Salmonella typhimurium, J. Biol. Chem. 253: 7605–7608.

    CAS  Google Scholar 

  • Wang, J. Y. J., and Koshland, D. E., Jr., 1981, The identification of distinct protein kinases and phosphatases in the prokaryote Salmonella typhimurium, J. Biol. Chem. 256: 4640–4648.

    CAS  Google Scholar 

  • Wang, R. J., and Morse, M. L., 1968, Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants, J. Mol. Biol. 32: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R. J., Morse, H. G., and Morse, M. L., 1970, Carbohydrate accumulation and metabolism in Escherichia coli: Characterization of the reversions of ctr mutations, J. Bacteriol. 104: 1318–1324.

    PubMed  CAS  Google Scholar 

  • Waygood, E. B., 1980, Resolution of the phosphoenolpyruvate: fructose phosphotransferase system of Escherichia coli into two components; enzyme IIFn,ctose and fructose-induced HPr-like protein (FPr), Can. J. Biochem. 58: 1144–1146.

    PubMed  CAS  Google Scholar 

  • Waygood, E. B., and Steeves, T., 1980, Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) of Escherichia coli—Purification to homogeneity and some properties. Can. J. Biochem. 58: 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Waygood, E. B., Meadow, N.D., and Roseman, S., 1979, Modified assay procedures for the phosphotransferase system in enteric bacteria, Anal. Biochem. 95: 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, N., Waygood, E. B., Kukuruzinska, M. A., Nakazawa, A., and Roseman, S., 1982a, Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium, J. Biol. Chem. 257: 14461–14469.

    CAS  Google Scholar 

  • Weigel, N., Kukuruzinska, M. A., Nakazawa, A., Waygood, E. B., and Roseman, S., 1982b, Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium, J. Biol. Chem. 257: 14477–14491.

    CAS  Google Scholar 

  • Weigel, N., Powers, D. A., and Roseman, S., 1982c, Sugar transport by the bacterial phosphotransferase system. Primary structure and active site of a general phosphocarrier protein (HPr) from Salmonella typhimurium, J. Biol. Chem. 257: 14499–14509.

    CAS  Google Scholar 

  • White, R. J., 1970, The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli, Biochem. J. 118: 89–92.

    CAS  Google Scholar 

  • Woodward, M. J., and Charles, H. P., 1983, Polymorphism in Escherichia coil: rtl, atl and gat regions behave as chromosomal alternatives, J. Gen. Microbiol. 129: 75–84.

    PubMed  CAS  Google Scholar 

  • Wright, J. K., Teather, R. M., and Overath, P., 1983, Lactose permease of Escherichia coil, Methods Enzymol. 97: 158–175.

    CAS  Google Scholar 

  • Yang, J. K., and Epstein, W., 1983, Purification and characterization of adenylate cyclase from Escherichia coil K12, J. Biol. Chem. 258: 3750–3758.

    PubMed  CAS  Google Scholar 

  • Yang, J. K., Bloom, R. W., and Epstein, W., 1979, Catabolite and transient repression in Escherichia coil do not require enzyme I of the phosphotransferase system, J. Bacteriol. 138: 275–279.

    PubMed  CAS  Google Scholar 

  • Zimmerman, F. K., and Scheel, I., 1979, Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression, Mol. Gen. Genet. 154: 75–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Postma, P.W. (1986). The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System of Escherichia coli and Salmonella typhimurium. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics