Skip to main content

A Simple Tight Binding Description of the Electronic Structure of a Single and a Pair of Hydrogen Atoms in fcc Transition Metals

  • Chapter
Electronic Structure and Properties of Hydrogen in Metals

Part of the book series: NATO Conference Series ((SYSC,volume 6))

Abstract

The electronic structure of an Hydrogen impurity embedded in a face centred cubic transition metal is obtained by a generalized tight binding Slater-Koster fit to the first principles band structure for the host, combined with one s orbital for the isolated impurity atom. Matrix elements of the perturbing potential up to the first nearest neighbours of the interstitial are explicitely taken into account. The hopping integrals between the Hydrogen and the metallic sites are deduced from ab initio calculation of the corresponding hydride. The intrasite matrix elements are given in terms of the local Coulomb correlation U on the Hydrogen site and are adjusted with the help of Friedel’s screening rule. Nearest neighbours and next nearest neighbors pairs of Hydrogen atoms in α-Palladium hydrides are shown to be forbidden. Elements of an estimation of elastic binding energy are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Switendick, Solid State Comm. 8: 1463 (1970).

    Article  ADS  Google Scholar 

  2. A.C. Switendick, Z. Phys. Chem. Wiesbaden 117: 89 (1979).

    Google Scholar 

  3. P. Jena, F.Y. Fradin, D.E. Ellis, Phys. Rev. B 20: 3543 (1979).

    Article  ADS  Google Scholar 

  4. D.A. Papaconstantopoulos, B.M. Klein, J.S. Faulkner and L.L. Boyer, Phys. Rev. B 18: 2784 (1978).

    Article  ADS  Google Scholar 

  5. A.J. Pindor and W. Temmerman in Workshop on Hydrogen in Metals: problems related to the impurity and to non-stoichiometric compounds, CECAM, Orsay (1981).

    Google Scholar 

  6. C.A. Sholl and P.V. Smith, J. Phys. F: Metal Phys. 10: 11 (1980).

    Article  Google Scholar 

  7. J.P. Bugeat and E. Ligeon, Phys. Lett. A 71: 93 (1979).

    Article  ADS  Google Scholar 

  8. J.L. Beeby, Proc. Roy. Soc. London A 302: 113 (1967).

    Article  ADS  Google Scholar 

  9. H. Katayama, K. Terakura and J.Kanamori, Solid State Comm. 29: 31 (1979).

    Article  Google Scholar 

  10. J. Kanamori, Proceedings JIMIS 2, Hydrogen in Metals 33 (1980).

    Google Scholar 

  11. M. Yussouff and R. Zeller in: Recent Developments in Condensed Matter Physics, J.T. Devreese, L.F. Lemmens, V.E. Van Doren and J. Van Royen, Plenum, New-York 3: 135 (1981).

    Google Scholar 

  12. P.H. Dederichs in Electronic Structure and Phonon Properties in Dilute and Concentrated Metal Hydrides, Orsay (1980).

    Google Scholar 

  13. J.E. Inglesfield, J. Phys. F:Metal Phys. 11: L 287 (1981).

    Article  Google Scholar 

  14. C. Demangeat, M.A. Khan and J.C. Parlebas, J.M.M.M. 15–18: 1275 (1980).

    Google Scholar 

  15. M.A. Khan, J.C. Parlebas and C. Demangeat, Phil. Mag. B 42: 111 (1980).

    Article  Google Scholar 

  16. M.A. Khan, G. Moraitis, J.C. Parlebas and C. Demangeat in: 11th Int. Symp. on Elec. Struc. of Metals and Alloys, P. Ziesche, Gaussig, 50 (1981).

    Google Scholar 

  17. C. Demangeat and J.C. Parlebas in: 9th Int. Symp. on Elec. Struc. and Alloys, P. Ziesche ed., Gaussig, 43 (1979).

    Google Scholar 

  18. J.C. Parlebas, C. Demangeat and M.C. Cadeville, J. Appl. Phys. 50: 7545 (1979).

    Article  ADS  Google Scholar 

  19. C. Demangeat, M.A. Khan and J.C. Parlebas, J.M.M.M. 15–18: 885 (1980).

    Google Scholar 

  20. S. Dietrich and H. Wagner, Z. Phys. B36: 121 (1979).

    Google Scholar 

  21. J. Völkl, G. Wollenweber, K.H. Klatt and G. Alefeld, Z. Naturforsch. A 26: 922 (1971).

    ADS  Google Scholar 

  22. P.H. Dederichs and J. Deutz in: Continuum Models of Discrete Systems, University of Waterloo Press, 329 (1980).

    Google Scholar 

  23. J. Khalifeh, G. Moraitis and C. Demangeat, poster session of this conference.

    Google Scholar 

  24. K. Masuda and J. Mori, J. Physique 37: 569 (1976).

    Article  Google Scholar 

  25. C. Demangeat, M.A. Khan, G. Moraitis and J.C. Parlebas, J. Physique 41: 1001 (1980).

    Article  Google Scholar 

  26. C. Demangeat, M.A. Khan, G. Moraitis and J.C. Parlebas in: Recent Developments in Condensed Matter Physics, J.T.Devreese, L.F. Lemmens, V.E. Van Doren and J. Van Royen, Plenum, New-York 4: 365 (1981).

    Google Scholar 

  27. G. Moraitis and C. Demangeat, Phys. Lett. A 83: 460 (1981).

    Article  ADS  Google Scholar 

  28. J. Khalifeh and C. Demangeat, to be published.

    Google Scholar 

  29. J. Khalifeh, D. Sc. Thesis, Strasbourg (1982) unpublished.

    Google Scholar 

  30. J.S. Faulkner, Phys. Rev. B 13: 2391 (1976).

    Article  ADS  Google Scholar 

  31. H.B. Michaelson, J. Appl. Phys. 48: 4729 (1977).

    Article  ADS  Google Scholar 

  32. C.D. Gelatt Jr, H. Ehrenreich and J.A. Weiss, Phys. Rev. B 17: 1940 (1978).

    Article  ADS  Google Scholar 

  33. M.I. Darby, G.R. Evans and M.N. Read, J. Phys. F: Metal Phys. 11: 1023 (1981).

    Article  ADS  Google Scholar 

  34. U. Mizutani, T.B. Massalski and J. Bevk, J. Phys. F: Metal Phys. 6: 1 (1976).

    Article  ADS  Google Scholar 

  35. H. Frieske and E. Wicke, Ber. Bunsenges, Phys. Chem. 77: 48 (1973).

    Google Scholar 

  36. M. Natta and G. Toulouse, Phys. Lett. A 24: 205 (1967).

    Article  ADS  Google Scholar 

  37. R. Speiser and J.W. Spretnak, Trans. Am. Soc. Metals 47: 493 (1955).

    Google Scholar 

  38. G. Boureau and J. Campserveux, Phil. Mag. 36: 9 (1977).

    Article  ADS  Google Scholar 

  39. G. Boureau, J. Phys. Chem. Sol. 42: 743 (1981).

    Article  Google Scholar 

  40. V. Heine in: Solid State Phys., Academic Press 35: 92 (1980).

    Google Scholar 

  41. V.K. Tewary, Adv. Phys. 22: 757 (1973).

    Article  ADS  Google Scholar 

  42. G. Moraitis and C. Demangeat in Proceedings of Physics of Transition Metals 1980, Inst. Phys. Conf. Ser. 55: 583 (1981).

    Google Scholar 

  43. J. Khalifeh, G. Moraitis and C. Demangeat, J. Physique: 43: 165 (1982).

    Article  Google Scholar 

  44. J. Khalifeh, G. Moraitis and C. Demangeat, J. Less Common Metals, under press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Khan, M.A., Parlebas, J.C., Demangeat, C. (1983). A Simple Tight Binding Description of the Electronic Structure of a Single and a Pair of Hydrogen Atoms in fcc Transition Metals. In: Jena, P., Satterthwaite, C.B. (eds) Electronic Structure and Properties of Hydrogen in Metals. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7630-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7630-9_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7632-3

  • Online ISBN: 978-1-4684-7630-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics