Skip to main content

Introduction to Lattice Gauge Theories

  • Chapter
Recent Developments in Gauge Theories

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 59))

  • 1138 Accesses

Abstract

Since 1974 when K. Wilson[1]proposed to study the large coupling behaviour of a Yang-Mills theory using a lattice to provide an ultraviolet cut-off, the literature on the subject has developped very fast. It is not however possible to claim at this moment that realistic answers have been provided to the central problem of quark confinement in quantum chromodynamics, including particle spectrum, partial conservation of the axial current... As it sometimes occur, certain aspects of questions have led to unexpected developments. The most striking is a closer relation between quantum field theory and statistical mechanics,including the behavior of disordered systems, the concept of frustration, dual transformations to describe new types of excitations... Numerical studies have been reported or are in progress. Together with various rigorous results they enable us to get a preliminary view of the phase diagram,particularly of the existence of transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Phys. Rev. D10, 2445 (1974).

    ADS  Google Scholar 

  2. S. Elitzur, Phys. Rev. D12, 3978 (1975).

    ADS  Google Scholar 

  3. D.J. Thouless, P.N. Anderson, R.G. Palmer, Phil. Mag. 35, 593 (1977).

    Article  ADS  Google Scholar 

  4. M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. Lett. 42, 1390 (1979) and BNL 26307 (1979).

    Google Scholar 

  5. R. Balian, J.M. Drouffe, C. Itzykson, Phys. Rev. D10, 3376 (1974), D11, 2098 (1975), D11, 2104 (1975), D19, 2514 (1979). J.M. Drouffe, C. Itzykson, Phys. Rep. 38C, 133 (1978).

    Google Scholar 

  6. J. Kogut, L. Susskind, Phys. Rev. D11, 395 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Villain, Journal de Physique 36, 581 (1975).

    Article  Google Scholar 

  8. F.J. Wegner, Journ. Math. Phys. 12, 2259 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  9. J.M. Drouffe, Phys. Rev. D18, 1174 (1978).

    ADS  Google Scholar 

  10. J.V. José, L.P. Kadanoff, S. Kirkpatrick, D.R. Nelson, Phys. Rev. B16, 1217 (1977).

    Article  ADS  Google Scholar 

  11. M.E. Peskin, Ann. of Phys. (NY) 113, 122 (1978).

    Article  ADS  Google Scholar 

  12. G.F. de Angelis, D. de Falco, F. Guerra, R. Marra in Facts and Prospects of Gauge Theories ed. by P. Urban, Springer (1978).

    Google Scholar 

  13. G. Mack and V.B. Petkova, Preprint Hamburg (1978). J. Frohlich, Preprint I11ES (1979). Korthals Altes

    Google Scholar 

  14. A. Messager, S. Miracle-Sole, C. Pfister, Comm. Math. Phys. 58, 19 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  15. A.A. Migdal, Zh E.T.F. 69, 810, 1477 (1975).

    Google Scholar 

  16. J.M. Drouffe, G. Parisi, N. Sourlas, Preprint Dph-T 104–79 (1979).

    Google Scholar 

  17. E. Brezin, C. Itzykson, G. Parisi, J.B. Zuber, Comm. Math. Phys. 59, 35 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. It is interesting to quote the remarkable agreement between the Monte Carlo work and the analytical estimates obtained from strong coupling expansions both with an accuracy of a few percent at the present stage. Take for instance the self-dual 4-dimensional Z2 model with critical coupling βc given by tanh \({{\beta }_{c}}=\sqrt{2}-1\). From section 5 the average plaquet-te action defined as \(E=\frac{1}{6}\frac{dF}{d\beta }\) admits an expansion E = t + 4t5 - 4t7 + 60t9 + 56t11+ 1088t13 - 878t15 +... with t = tanh β. From duality it follows that E(βc+ε) + E(βc-ε) = √2 while the above series yields E(βc-ε) = 0.4819. The predicted discontinuity at the critical point is therefore ∆E = E(βc+ε) + E(βc-ε) = 0.4504 which agrees with the “observed” value reported in [4].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Itzykson, C. (1980). Introduction to Lattice Gauge Theories. In: Hooft, G., et al. Recent Developments in Gauge Theories. NATO Advanced Study Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7571-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7571-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7573-9

  • Online ISBN: 978-1-4684-7571-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics