Skip to main content

GABAB Receptor-Mediated Inhibition of Synaptic Transmission in the Hippocampus: Pharmacology and Intracellular Mechanisms

  • Chapter
Presynaptic Receptors in the Mammalian Brain

Abstract

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system that affects cellular excitability by opening or closing a variety of ion channels or by modulating a number of intracellular messengers. Some actions of GABA are associated with an increase in membrane conductance to Cl- ions and are antagonized by the GABA antagonists bicuculline and Picrotoxin. Receptors mediating these effects are referred to as GABAA receptors and have been investigated intensively, especially because of their close association to the benzodiazepine and barbiturate binding sites. More recently, presynaptic bicuculline-insensitive actions of GABA have been discovered by Bowery and his colleagues, who opened up a new field of investigation (see Bowery, 1982). These actions are mediated by GABAB receptors, which are specifically activated by the GABAB agonists baclofen and 3-aminopropylphosphonic acid. We describe in this chapter recent data concerning the presynaptic actions mediated by GABAB receptors in the hippocampus. We first briefly summarize the better known postsynaptic effects of GABAB receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allerton CA, Boden PR, Hill RG (1989): Actions of the GABAB agonist, (-)-baclofen, on neurones in deep dorsal horn of the rat spinal cord in vitro. Br J Pharmacol 96:29–38

    PubMed  CAS  Google Scholar 

  • Baumann PA, Wicki P, Stierlin C, Waldmeier PC (1990): Investigations on GABAB receptor-mediated autoinhibition of GABA release. Naunyn-Schmied Arch Pharmacol 341:88–93

    Article  CAS  Google Scholar 

  • Blaxter TJ, Carlen PL (1985): Pre and post-synaptic effects of baclofen in the rat hippocampal slice. Brain Res 341:195–199

    Article  PubMed  CAS  Google Scholar 

  • Blaxter TJ, Carlen PL, Davies MF, Kujtan PW (1986): 7-Aminobutyric acid hyperpolar-izes rat hippocampal pyramidal cells through a calcium-dependent potassium conductance. J Physiol 373:181–195

    PubMed  CAS  Google Scholar 

  • Blaxter TJ, Cottrell GA (1985): Actions of GABA and ethylenediamine on CA1 pyramidal neurons of the rat hippocampus. Q J Exp Physiol 70:75–93

    PubMed  CAS  Google Scholar 

  • Bowery NG (1982): Baclofen: 10 years on. TiPS 3:400–403

    CAS  Google Scholar 

  • Burke SP, Nadler JV (1988): Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen. J Neurochem 51:1541–1551

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Mercuri NB, De Murtas M, Bernardi G (1991): Involvement of GABA systems in feedback regulation of glutamate- and GABA-mediated synaptic potentials in rat neostriatum. J Physiol 440:581–599

    PubMed  CAS  Google Scholar 

  • Colmers WF, Pittman QJ (1989): Presynaptic inhibition by neuropeptide Y and baclofen in hippocampus: insensitivity to pertussis toxin treatment. Brain Res 498:99–104

    Article  PubMed  CAS  Google Scholar 

  • Colmers WF, Williams JT (1988): Pertussis toxin pretreatment discriminates between pre and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci Lett 93:300–306

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Malenka RC, Silva LR (1988): Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406:443–468

    PubMed  CAS  Google Scholar 

  • Cruelli V, Haby M, Jassik-Gerschenfeld D, Leresche N, Pirchio M (1988): Cl- and K+-dependent inhibitory postsynaptic potentials evoked by interneurons of the rat lateral geniculate nucleus. J Physiol 399:153–176

    Google Scholar 

  • Davies CH, Davies SN, Collingridge GL (1990): Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424:513–531

    PubMed  CAS  Google Scholar 

  • Davies CH, Starkey SJ, Pozza MF, and Collingridge GL (1991): GABAB autoreceptors regulate the induction of LTP. Nature 349:609–611

    Article  PubMed  CAS  Google Scholar 

  • Deisz RA, Prince DA (1989): Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feed-back on GABA release. J Physiol 412:513–541

    PubMed  CAS  Google Scholar 

  • Dolphin AC, Scott RH (1987): Calcium channel currents and their inhibition by (-) baclofen in rat sensory neurons: modulation by guanine nucleotides. J Physiol 386:1–17

    PubMed  CAS  Google Scholar 

  • Drew CA, Johnston GA, Weatherby RP (1984): Bicuculline-insensitive GABA-receptors: studies on the binding of (-)-baclofen to rat cerebellar membranes. Neurosci Lett 52:317–321

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Taylor M, Cass WA, Fitzpatrick FA, Zahniser NR (1990): Arachidonic acid metabolites do not mediate modulation of neurotransmitter release by adenosine in rat hippocampus or striatum. Brain Res 527:76–80

    Article  PubMed  CAS  Google Scholar 

  • Dutar P, Nicoli RA (1988a): A physiological role for GABAB receptors in the CNS. Nature 332:156–158

    Article  PubMed  CAS  Google Scholar 

  • Dutar P, Nicoli RA (1988b): Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1:585–591

    Article  PubMed  CAS  Google Scholar 

  • Dutar P, Rascol O, Lamour Y (1989): ω-conotoxin GVIA blocks synaptic transmission in the CA1 field of the hippocampus. Eur J Pharmacol 174:261–266

    Google Scholar 

  • El Manira A, Clarac F (1991): GABA-mediated presynaptic inhibition in Crayfish primary afferents by non-A, non-B GABA receptors. Eur J Neurosci 3:1208–1218

    Article  PubMed  Google Scholar 

  • Gage PW (1992): Activation and modulation of neuronal K+ channels by GABA. Trends Neurosci 15:46–51

    Article  PubMed  CAS  Google Scholar 

  • Gähwiler BH, Brown DA (1985): GABAB receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampus. Proc Natl Acad Sci USA 82:1558–1562

    Article  PubMed  Google Scholar 

  • Harrison NL (1990): On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J Physiol 422:433–446

    PubMed  CAS  Google Scholar 

  • Harrison NL, Lovinger DM, Lambert NA, Teyler TJ, Prager R, Ong J, Kerr DIB (1990): The action of 2-hydroxy-saclofen at presynaptic GABAB receptors in the rat hippocampus. Neurosci Lett 119:272–276

    Article  PubMed  CAS  Google Scholar 

  • Hasuo H, Gallagher JP (1988): Comparison of antagonism by phaclofen of baclofen induced hyperpolarizations and synaptically mediated late hyperpolarizing potentials recorded intracellularly from rat dorsolateral septal neurons. Neurosci Lett 86:77–81

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger R, Matthews G (1991): Inhibition of calcium influx and calcium current by 7-aminobutyric acid in single synaptic terminals. Proc Natl Acad Sci USA 88:7135–7139

    Article  PubMed  CAS  Google Scholar 

  • Holz IV GG, Rane SG, Dunlap K (1986): GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670–672

    Article  PubMed  CAS  Google Scholar 

  • Horne AL, Kemp JA (1991): The effect of ω-conotoxin GVIA on synaptic transmission within the nucleus accumbens and hippocampus of the rat in vitro. Br J Pharmacol 103:1733–1739

    PubMed  CAS  Google Scholar 

  • Howe JR, Sutor B, Zieglgansberger W (1987): Baclofen reduced postsynaptic potential of rat cortical neurones by an action other than its hyperpolarizing action. J Physiol 384:539–569

    PubMed  CAS  Google Scholar 

  • Huston E, Scott RH, Dolphin AC (1990): A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists on transmitter release and somatic calcium channel currents in cultured neurons. Neuroscience 38:721–729

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Matsuo T, Ogata N (1985a): Possible involvement of K+ conductance in the action of Îł-aminobutyric acid in the guinea-pig hippocampus. Br J Pharmacol 86:515–524

    PubMed  CAS  Google Scholar 

  • Inoue M, Matsuo T, Ogata N (1985b): Baclofen activates voltage-dependent and 4-ami-nopyridine sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br J Pharmacol 84:833–841

    PubMed  CAS  Google Scholar 

  • Inoue M, Matsuo T, Ogata N (1985c): Characterization of pre and postsynaptic actions of (-)-baclofen in the guinea-pig hippocampus in vitro. Br J Pharmacol 84:843–851

    PubMed  CAS  Google Scholar 

  • Kamatchi GL, Ticku MK (1990): Functional coupling of presynaptic GABAB receptors with voltage-gated Ca2+ channel: regulation by protein kinases A and C in cultured spinal cord neurons. Mol Pharmacol 38:342–347

    PubMed  CAS  Google Scholar 

  • Karbon EW, Enna SJ (1989): GABAB receptors and the augmentation of neurotransmitter-stimulated cyclic AMP production. In: GABA: Basic Research and Clinical Applications, Bowery NG, Nistico G, eds. Pythagora Press Rome, Milan

    Google Scholar 

  • Kerr DIB, Ong J, Prager RH, Gynther BD, Curtis DR (1987): Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405:150–154

    Article  PubMed  CAS  Google Scholar 

  • Lambert NA, Harrison NL, Kerr DIB, Ong J, Prager RH, Teyler TJ (1989): Blockade of the late IPSP in rat CA1 hippocampal neurons by 2-hydroxy-saclofen. Neurosci Lett 107:125–128

    Article  PubMed  CAS  Google Scholar 

  • Lambert NA, Harrison NL, Teyler TT (1991): Baclofen-induced disinhibition in area CA1 of rat hippocampus is resistant to extracellular Ba2+. Brain Res 547:349–352

    Article  PubMed  CAS  Google Scholar 

  • Lanthorn TH, Cotman CW (1981): Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus. Brain Res 225:171–178

    Article  PubMed  CAS  Google Scholar 

  • Malouf AT, Robbins CA, Schwartzkroin PA (1990): Phaclofen inhibition of the slow inhibitory postsynaptic potential in hippocampal slice cultures: a possible role for the GABAB-mediated inhibitory postsynaptic potential. Neuroscience 35:53–61

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA (1989): GAB A as an inhibitory neurotransmitter in human cerebral cortex. J Neurophysiol 62:1018–1027

    PubMed  CAS  Google Scholar 

  • Miller RJ (1987): Multiple calcium channels and neuronal function. Science 235:46–52

    Article  PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoli RA (1984a): Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308:450–452

    Article  PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoli RA (1984b): A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J Physiol 348:239–254

    PubMed  CAS  Google Scholar 

  • Newberry NR, Nicoli RA (1985): Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol 360:161–185

    PubMed  CAS  Google Scholar 

  • Nicoli RA, Malenka RC, Kauer JA (1990): Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev 70:513–565

    Google Scholar 

  • Nicoli RA, Dutar P (1989): Physiological roles of GABAA and GABAB receptors in synaptic transmission in the hippocampus. In: Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications, Barnard EA, Costa E, eds. New York: Raven Press

    Google Scholar 

  • Olpe H-R, Karlsson G, Pozza M, Brugger F, Steinmann M, Van Riezen H, Fagg G, Hall RG, Froestl W, Bittiger H (1990): CGP 35348: a centrally active blocker of GABAB receptors. Eur J Pharmacol 187:27–38

    Article  PubMed  CAS  Google Scholar 

  • Osmanovic SS, Shefner SA (1988): Baclofen increases the potassium conductance of rat locus coeruleus neurons recorded in brain slices. Brain Res 438:124–136

    Article  PubMed  CAS  Google Scholar 

  • Pinnock RD (1984): Hyperpolarizing action of baclofen on neurons in the rat substantia nigra slice. Brain Res 322:337–340

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D, Greengard P (1990): Lipoxygenase metabolites of arachidonic acid on neuronal transmembrane signalling. TiPS 11:367–373

    PubMed  CAS  Google Scholar 

  • Potier B, Dutar P (1993): Presynaptic inhibitory effect of baclofen on hippocampal inhibitory synaptic transmission involves a pertussis toxin-sensitive G-protein. Eur J Pharmacol 231:427–433

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Bonanno G, Fedele E (1989a): Release of Îł-[3H]aminobutyric acid (GABA) from electrically stimulated rat cortical slices and its modulation by GABAB autore-ceptors. J Pharm Exp Ther 250:648

    CAS  Google Scholar 

  • Raiteri M, Pellegrini G, Cantoni C, Bonanno G (1989b): A novel type of GABA receptor in rat spinal cord. Naunyn-Schmied Arch Pharmac 340:666–670

    Article  CAS  Google Scholar 

  • Rane SG, Walsh MP, McDonald JR, Dunlap K (1989): Specific inhibitors of protein kinase C block transmitter-induced modulation of sensory neuron calcium current. Neuron 3:239–245

    Article  PubMed  CAS  Google Scholar 

  • Scherer RW, Ferkany JW, Enna SJ (1988): Evidence for pharmacologically distinct subsets of GABAB receptors. Brain Res Bull 21:439–443

    Article  PubMed  CAS  Google Scholar 

  • Scholz KP, Miller RJ (1991): GABAB receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurones. J Physiol 444:669–686

    PubMed  CAS  Google Scholar 

  • Seabrook GR, Howson W, Lacey MG (1990): Electrophysiological characterization of potent agonists and antagonists at pre- and postsynaptic GABAB receptors on neurones in rat brain slices. Br J Pharmacol 101:949–957

    PubMed  CAS  Google Scholar 

  • Sekiguchi M, Sakuta H, Okamoto K, Sakai Y (1990): GABAB receptors expressed in Xenopus oocytes by guinea pig cerebral mRNA are functionally coupled with Ca2+-dependent Cl- channels and with K+ channels, through GTP-binding proteins. Mol Br Res 8:301–309

    Article  CAS  Google Scholar 

  • Solis JM, Nicoli RA (1992): Pharmacological characterization of GABAB mediated responses in the CA1 region of the rat hippocampal slice. J Neuro sci 12:3466–3472

    CAS  Google Scholar 

  • Soltesz I, Haby N, Leresche N, Crunelli V (1988): The GABAB antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res 448:351–354

    Article  PubMed  CAS  Google Scholar 

  • Stevens DR, Gallagher JP, Shinnick-Gallagher P (1985): Further studies on the action of baclofen on neurones of the dorsolateral septal nucleus of the rat, in vitro. Brain Res 358:360–363

    Article  PubMed  CAS  Google Scholar 

  • Stratton KR, Cole AJ, Pritchett J, Eccles CU, Worley PF, Baraban JM (1989): Intrahip-pocampal injection of pertussis toxin blocks adenosine suppression of synaptic responses. Brain Res 494:359–364

    Article  PubMed  CAS  Google Scholar 

  • Thalmann RH (1988): Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTP7S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J Neurosci 8:4589–4602

    PubMed  CAS  Google Scholar 

  • Thompson SM, Gähwiler BH (1992): Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J Physiol 451:329–345

    PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988): Multiples types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–437

    Article  PubMed  CAS  Google Scholar 

  • Van der Ploeg I, Cintra A, Altiok N, Askelöf P, Fuxe K, Fredholm BB (1991): Limited distribution of pertussis toxin in rat brain after injection into the lateral cerebral ventricles. Neuroscience 44:205–214

    Article  PubMed  Google Scholar 

  • Waldmeier PC, Wicki P, Feldtrauer JJ, Baumann PA (1988): Potential involvement of a (—)-baclofen-sensitive autoreceptor in the modulation of the release of endogenous GAB A from rat brain slices in vitro. Naunyn-Schmiedebergs Arch Pharmacol 377:289–295

    Google Scholar 

  • Wang MY, Dun NJ (1990): Phaclofen-insensitive presynaptic inhibitory action of (+)-(—)- baclofen in neonatal rat motoneurones in vitro. Br J Pharmacol 99:413–421

    PubMed  CAS  Google Scholar 

  • Wojcik WJ, Paez X, Ulivi M (1989): A transduction mechanism for GABAB receptors. In: Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications, Barnard EA, Costa E, eds. New York: Raven Press

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Boston

About this chapter

Cite this chapter

Dutar, P., Nicoll, R.A. (1993). GABAB Receptor-Mediated Inhibition of Synaptic Transmission in the Hippocampus: Pharmacology and Intracellular Mechanisms. In: Dunwiddie, T.V., Lovinger, D.M. (eds) Presynaptic Receptors in the Mammalian Brain. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6825-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6825-0_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6827-4

  • Online ISBN: 978-1-4684-6825-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics