Skip to main content

Differentiation of Dietary Fiber Sources by Chemical Characterization

  • Chapter
New Developments in Dietary Fiber

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 270))

  • 337 Accesses

Abstract

The terra “dietary fiber” is generally defined as the components of plant cell walls which are indigestible by humans.1,2 Interest in fiber has risen recently as various physiological effects, such as the lowering of serum cholesterol3 and a decrease in the incidence of colon cancer,4 have become widely reported. From a chemical point of view, dietary fiber consists of the nonstarch polysaccharides (NSP) and lignin, which are not metabolized by human small intestinal enzymes. The NSP are represented by such chemically diverse compounds as hemicellulose, cellulose, pectin, carrageenan, guar gum and agar. Lignin is a highly cross-linked polymer of phenylpropane units derived from coniferyl, sinapyl and coumaryl alcohols. Information about various types of polysaccharides found in plants is used in the present study to differentiate fiber sources by characterizing their polysaccharide components. From this type of chemical characterization we can then “fingerprint” or analyze for chemical differences among the many fiber sources that are claimed to produce different physiological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Spiller and R.M. Kay, Recommendations and conclusions of the dietary fiber workshop of the XI international congress of nutrition, Rio de Janeiro, Am. J. Clin. Nutr. 32:2102 (1979).

    CAS  Google Scholar 

  2. H. Trowell, D.A. Southgate, T.M. Wolever, A.R. Leeds, M.A. Gassell, and D.J.A. Jenkins, Dietary fiber redefined, Lancet 1:967 (1976).

    Article  CAS  Google Scholar 

  3. J.W. Anderson, L. Story, B. Sieling, W.-J.L. Chen, M.S. Petro, and J. Story, Hypocholesterolemic effects of oat bran and bean intake for hypercholesterolemic men, Am. J. Clin. Nutr. 40:1146 (1984).

    CAS  Google Scholar 

  4. M.A. Howell, Diet as an etiological factor in the development of cancers of the colon and rectum, J. Chronic Dis. 27:67 (1975).

    Article  Google Scholar 

  5. H.N. Englyst, V. Anderson, and J.H. Cummings, Starch and non-starch polysaccharides in some cereal foods, J. Sci. Food Agric. 32:1434 (1983).

    Article  Google Scholar 

  6. L.A. MacArthur and B.L. D’Appolonia, Comparison of nonstarchy polysaccharides in oats and wheat, Cereal Chem. 57:39 (1980).

    CAS  Google Scholar 

  7. R.J. Henry, A comparison of the non-starch carbohydrates in cereal grains, J. Sci. Food. Agric. 36:1243 (1985).

    Article  CAS  Google Scholar 

  8. G.O. Aspinall and R.C. Carpenter, Structural investigations on the non-starchy polysaccharides in oat bran, Carbohydr. Polym. 4:271 (1984).

    Article  CAS  Google Scholar 

  9. S. Wada and P.M. Ray, Matrix polysaccharides of oat coleoptile cell walls, Phytochemistry 17:923 (1978).

    Article  CAS  Google Scholar 

  10. J.B. Wyman, K.W. Heaton, A.P. Manning, and A.C.B. Wicks, The effect on intestinal transit and the feces of raw and cooked bran in different doses, Am. J. Clin. Nutr. 29:1474 (1976).

    CAS  Google Scholar 

  11. A.G.J. Voragen, H.A. Schols, F.M. Marijs, and F.M. Rombouts, Non-starch polysaccharides from barley: Structural features and breakdown during malting, J. Inst. Brew. 93:202 (1987).

    CAS  Google Scholar 

  12. J.M. Brillouet and C. Mercier, Fractionation of wheat bran carbohydrates, J. Sci. Food. Agric. 32:243 (1981).

    Article  CAS  Google Scholar 

  13. S.G. Ring and R.R. Selvandren, Isolation and analysis of cell wall material from Beeswing wheat bran (Triticum aestivum), Phytochemistry 19:1723 (1980).

    Article  CAS  Google Scholar 

  14. P.B. Schwarz, W.H. Kunerth, and V.L. Youngs, The distribution of lignin and other fiber components within hard red spring wheat bran, Cereal Chem. 65:59 (1988).

    CAS  Google Scholar 

  15. G.O. Aspinall, I.W. Cottrell, S.V. Egan, I.M. Morrison, and J.N.C. Whyte, Polysaccharides of soy-beans. Part IV. Partial hydrolysis of the acidic polysaccharide complex from cotyledon meal, J. Chem. Soc. C, 1071 (1967).

    Google Scholar 

  16. G.O. Aspinall, K. Hunt, and I.M. Morrison, Polysaccbarides of soy-beans. Part V. Acidic polysaccharides from the hulls, J. Chem. Soc. C, 1080 (1967).

    Google Scholar 

  17. O. Theander, Advances in the characterization and analytical determination of dietary fibre components, in “Dietary Fibre,” C.C. Birch and K.J. Parker, eds., Applied Science Publishers, London (1983).

    Google Scholar 

  18. L. Prosky , N.-G. Asp, I. Furda, J.W. DeVries, T.F. Schweizer, and B.F. Harland, Determination of total dietary fiber in foods, food products, and total diets: Interlaboratory study, J. Assoc. Off. Anal. Chem. 67:1044 (1984).

    Google Scholar 

  19. AOAC, “Changes in Official Methods of Analysis,” 14th Ed., 1st Suppl., AOAC, Arlington, VA (1985) secs 43.A14–43.A20.

    Google Scholar 

  20. P.J. Harris, R.J. Henry, A.B. Blakeney, and B.A. Stone, An improved procedure for the methylation analysis of oligosaccharides and polysaccharides, Carbohydr. Res. 127:59 (1984).

    Article  CAS  Google Scholar 

  21. S.I. Hakomori, A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide, J. Biochem. (Tokyo) 55:205 (1964).

    CAS  Google Scholar 

  22. L.R. Phillips and B.A. Fraser, Methylation of carbohydrates with dimsyl potassium in dimethyl sulfoxide, Carbohydr. Res. 90:149 (1981).

    Article  CAS  Google Scholar 

  23. N.C. Carpita and E.M. Shea, Linkage structure of carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates, in “Analysis of Carbohydrates by GLC and MS,” C.J. Biermann and G.D. McGinnis, eds., CRC Press, Boca Raton (1988).

    Google Scholar 

  24. A.B. Blakeney, P.J. Harris, R.J. Henry, and B.A. Stone, A simple and rapid preparation of alditol acetates for monosaccharide analysis, Carbohydr. Res. 113:291 (1983).

    Article  CAS  Google Scholar 

  25. E.M. Shea and N.C. Carpita, Separation of partially methylated alditol acetates on SP-2330 and HP-1 vitreous silica capillary columns, J. Chromatogr. 445:424 (1988).

    Article  CAS  Google Scholar 

  26. C.E. Ballou, Alkali sensitive glycosides, Adv. Carbohydr. Chem. 9:59 (1954).

    Article  CAS  Google Scholar 

  27. H. Bjorndal, B. Lindberg, and S. Svensson, Mass spectrometry of partially methylated alditol acetates, Carbohydr.Res. 5:433 (1967).

    Article  CAS  Google Scholar 

  28. H. Bjorndal, B. Lindberg, A. Pilotti and S. Svensson, Mass spectra of partially methylated alditol acetates II. Deuterium labeling experiments, Carbohydr. Res. 15:339 (1970).

    Article  CAS  Google Scholar 

  29. L.S. Golovkina, O.S. Chizhov, and N.S. Wulfson, Mass-spektrometritcheskoe issledowanie uglewodow soobshenie 9. Acetaty polilow, Izv. Akad. Nauk SSSR, Ser. Khim. 1915 (1966).

    Google Scholar 

  30. P.E. Jansson, L. Kenne, H. Liedgren, B. Lindberg, and J. Lonngren, A practical guide to the methylation analysis of carbohydrates, Chem. Commun. Univ. Stockholm 8 (1976).

    Google Scholar 

  31. B. Lindberg, Methylation analysis of polysaccharides, Methods Enzymol. 28:178 (1972).

    Article  Google Scholar 

  32. B. Lindberg and J. Lonngren, Methylation analysis of complex carbohydrates: General procedure and application for sequence analysis, Methods Enzymol. 50:3 (1978).

    Article  CAS  Google Scholar 

  33. H. Rauvala, J. Finne, T. Krusius, J. Karkainen, and J. Jarnefelt, Methylation techniques in the structural analysis of glycoproteins and glycolipids, Adv. Carbohyr. Chem. Biochem. 38:389 (1981).

    Article  CAS  Google Scholar 

  34. H. Bjorndal, C.G. Hellerquist, B. Lindberg, and S. Svensson, Gas-liquid chromatography and mass spectrometry in methylation analysis of polysaccharides, Angew. Chem. Int. Ed. Engl. 9:610 (1970).

    Article  CAS  Google Scholar 

  35. J. Lonngren and S. Svensson, Mass spectrometry in structural analysis of natural carbohydrates, Adv. Carbohydr. Chem. Biochem. 29:41 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

McLaughlin, M.A., Gay, M.L. (1990). Differentiation of Dietary Fiber Sources by Chemical Characterization. In: Furda, I., Brine, C.J. (eds) New Developments in Dietary Fiber. Advances in Experimental Medicine and Biology, vol 270. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5784-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5784-1_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5786-5

  • Online ISBN: 978-1-4684-5784-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics