Skip to main content

A New Method for Calculation of Laser-Generated Ultrasound Pulses

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Abstract

The generation of acoustic pulses (in solids) by laser pulses has received considerable attention recently (an extensive review has been given by Hutchins[l]). Current applications are to nondestructive evaluation and materials characterization, where it is convenient to have a highly reproducible source requiring no contact with the sample [2–5]. The need to make these applications quantitative requires a theoretical model which:1) is based on fundamental principles; 2) allows the use of realistic sample and source properties; and 3) is readily usable by the research community without a major computational development effort. Doyle[6] and Schliechert et al.[7] have described approaches which meet the first two criteria, but which are very computation-intensive. We will describe and illustrate a new formulation[8] which meets all three criteria. Numerical calculations will be presented to illustrate the efficacy of this approach, with emphasis on the effects of finite source dimensions and sample surface modification. Comparison with previous point-source results will indicate when the latter may he used. Finally, we show that the small initial displacement “spike” observed in experiments with metal samples, is due to “mode conversion”(thermal-to-longitudinal) at the boundary, rather than to the finite size of the thermal source resulting from thermal diffusion. For the present we limit the discussion to the thermoelastic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. A. Hutchins, in Physical Acoustics, Vol. XVIII, ed., W. P. Mason and R. N. Thurston ( Academic, San Diego, 1988 ), p. 21–123.

    Google Scholar 

  2. F. A. McDonald, Can. J. Phys. 64, 1023–9 (1986).

    Article  Google Scholar 

  3. D. A. Hutchins and A. Tam, IEEE Trans. Ultrason., Ferroelectrics, Freq. Contr. UFFC-33, 429–449 (1986).

    Google Scholar 

  4. A. C. Tam, Rev. Mod. Phys. 58, 381 (1986).

    Article  Google Scholar 

  5. A. C. Tam, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, ed., A. Mandelis ( Elsevier, New York, 1987 ).

    Google Scholar 

  6. P. A. Doyle, J. Phys. D-Appl. Phys. 19, 1613–23 (1986).

    Article  Google Scholar 

  7. U. Schleichert, M. Paul, B. Hoffman, K. L. Langenberg, and W. Arnold, in Photoacoustic and Photothermal Phenomena Springer Ser. in Opt. Sci., Vol. 58, ed., P. Hess and J. Pelzl ( Springer-Verlag, Berlin, 1988 ), p. 284.

    Google Scholar 

  8. F. A. McDonald, Appl. Phys. Lett. 54, 1504–6 (1989).

    Article  Google Scholar 

  9. V. I. Danilovskaya, J. Appl. Math. and Mech. 14, 316–318 (1950).

    MathSciNet  Google Scholar 

  10. W. Nowacki, Thermoelasticity (2nd ed) ( Addison-Wesley, Reading, 1986 ), p. 228.

    Book  MATH  Google Scholar 

  11. R. M. White, J. Appl. Phys. 34, 3559–3567 (1963).

    Article  Google Scholar 

  12. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, J. Appl. Phys. 51, 6210–6216 (1980).

    Article  Google Scholar 

  13. R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, and C. B. Scruby, J. Appl. Phys. 53, 4064–71 (1982).

    Article  Google Scholar 

  14. L. R. Rose, J. Acoust. Soc. Am. 75, 723–732 (1984).

    MATH  Google Scholar 

  15. K. L. Telschow and R. J. Conant, Proc. 3rd Intern. Symp. Nondestr. Charact. Materials (to be published).

    Google Scholar 

  16. F. A. McDonald, V. Gutfeld, and R. W. Dreyfus, in IEEE 1986 Ultrasonics Symposium Proceedings(IEEE, New York, 1986 ), p. 403.

    Google Scholar 

  17. F. A. McDonald, R. W. Dreyfus, and V. Gutfeld, in Proc. 1987 IEEE Ultrasonics Symposium(IEEE, New York, 1987 ), p. 1179.

    Google Scholar 

  18. F. A. McDonald, in Proc. 1988 IEEE Ultrasonics Symposium(IEEE, New York, 1988 ), p. 465–468.

    Google Scholar 

  19. D. S. Chandrasekharaiah, Appl. Mech. Rev. 39, 355–376 (1986).

    Article  MATH  Google Scholar 

  20. K. S. Crump, J. ACM 23, 89 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. J. Conant and K. L. Telschow, in Rev. Prog. Quant. NDE, Vol. 8, ed., Thompson, D.O. ( Plenum, New York, 1989 ).

    Google Scholar 

  22. J. C. Strikwerda and A. M. Scott, J. Thermal Stresses 7, 1–17 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

McDonald, F.A. (1990). A New Method for Calculation of Laser-Generated Ultrasound Pulses. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5772-8_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5772-8_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5774-2

  • Online ISBN: 978-1-4684-5772-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics