Skip to main content

Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Effects of Crystalline and Amorphous Structures

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Abstract

The importance of nonlinearity in the description of material behavior is gaining widespread attention. Nonlinearity plays a major, if not dominating, role in a number of material properties. For example, properties that are important in engineering design such as thermal expansion or the pressure dependence of optical refraction are inherently nonlinear [1]. New assembley techniques such as the use of ultrasonic gauges to determine the loading of critical fasteners depend upon nonlinear properties of the fasteners [2]. Areas of considerable fundamental interest in nonlinearity include lattice dynamics [3], radiation stress in solids [4,5], and nonlinear optics [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. G. Collins and G. K. White, “Thermal expansion of solids”, in Progress in Low Temperature Physics, edited by C. J. Gorter (Wiley, New York, 1964), vol.4.

    Google Scholar 

  2. J. S. Heyman and E. J. Chern, J. Testing and Evaluation 10, 202 (1982).

    Article  Google Scholar 

  3. D. C. Wallace, Rev. Mod. Phys. 37, 57 (1965).

    Article  Google Scholar 

  4. J. H. Cantrell, Phys. Rev. B 30, 3214 (1984).

    Article  Google Scholar 

  5. W. T. Yost and J. H. Cantrell, Phys. Rev. B 30, 3221 (1984).

    Article  Google Scholar 

  6. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, New York, 1965 ).

    Google Scholar 

  7. See, for example, W. T. Yost, J. H. Cantrell, and M. A. Breazeale, J. Appl. Phys. 52, 126 (1981).

    Article  Google Scholar 

  8. J. H. Cantrell, Phys. Rev. B 21, 4191 (1980).

    Article  Google Scholar 

  9. W. T. Yost and J. H. Cantrell, J. Acoust. Soc. Am. 73, Suppl. 1, 82 (1983).

    Article  Google Scholar 

  10. K. Salama and G. A. Alers, Phys. Rev. 161, 673 (1967).

    Article  Google Scholar 

  11. Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

    Article  Google Scholar 

  12. T. Bateman, W. P. Mason, and H. J. McSkimin, J. Appl. Phys. 32, 928 (1961).

    Article  Google Scholar 

  13. K. Brugger, Phys. Rev. 133, A1611 (1964).

    Article  Google Scholar 

  14. D. C. Wallace, in Solid State Physics, edited by F. Seitz and D. Turnbull ( Academic, New York, 1967 ).

    Google Scholar 

  15. R. B. Thompson and H. F. Tiersten, J. Acoust. Soc. Am. 62, 33 (1977).

    Article  MATH  Google Scholar 

  16. R. N. Thurston and M. J. Shapiro, J. Acoust. Soc. Am. 41, 1112 (1967).

    Article  Google Scholar 

  17. S. Earnshaw, Philos. Trans. R. Soc. London 150, 133 (1860).

    Article  Google Scholar 

  18. E. Fubini-Ghiron, Alta Freq. 4, 530 (1935).

    Google Scholar 

  19. M. A. Breazeale and J. Ford, J. Appl. Phys. 36, 3486 (1965).

    Article  Google Scholar 

  20. Z. A. Goldberg, in High Intensity Ultrasonic Fields, edited by L. D. Rozenburg ( Plenum, New York, 1971 ).

    Google Scholar 

  21. Lord Rayleigh, Philos. Mag. 3, 338 (1902)

    Article  MATH  Google Scholar 

  22. L. Brillouin, Ann. Phys. (Paris) 4, 528 (1925)

    MATH  Google Scholar 

  23. L. Brillouin, Tensors in Mechanics and Elasticity ( Academic, New York, 1965 ).

    Google Scholar 

  24. B.-T. Chu and R. E. Apfel, J. Acoust. Soc. Am. 72, 1673 (1982).

    Article  Google Scholar 

  25. R. T. Beyer, J. Acoust. Soc. Am. 63, 1025 (1978).

    Google Scholar 

  26. P. H. Carr and A. J. Slobodnik, J. Appl. Phys. 38, 5153 (1967).

    Article  Google Scholar 

  27. J. H. Cantrell and W. P. Winfree, Appl. Phys. Lett. 37, 785 (1980).

    Article  Google Scholar 

  28. M. A. Breazeale and J. Philip, in Physical Acoustics, vol. 17, edited by W. P. Mason and R. N. Thurston ( Academic, New York, 1984 ).

    Google Scholar 

  29. J. H. Cantrell, W. T. Yost, and P. Li, Phys. Rev. B 35, 9780 (1987).

    Article  Google Scholar 

  30. P. Li, W. P. Winfree, W. T. Yost, and J. H. Cantrell, Proc IEEE Ultrasonics Symposium, IEEE Cat. No. 83CH1947–1 ( Institute of Electrical and Electronics Engineers, New York, 1983 ), p. 1152.

    Google Scholar 

  31. J. H. Cantrell, Proc. Inst. of Acoustics (U.K.), Vol. 11 (part 5), 1989, p. 445.

    Google Scholar 

  32. J. H. Cantrell and M. A. Breazeale, Phys. Rev. B 17, 4864 (1978).

    Article  Google Scholar 

  33. J. H. Cantrell, Ultrasonics International 1985 Conference Proc., edited by Z. Novak ( IPC Science and Technology Press, Guildford, Surrey, U.K., 1985 ), p. 551.

    Google Scholar 

  34. J. H. Cantrell, in preparation.

    Google Scholar 

  35. J. H. Cantrell, Proc. IEEE Ultrasonics Symposium, IEEE Cat. No. 86CH2375–4 ( Institute of Electrical and Electronics Engineers, New York, 1986 ), p. 1079.

    Google Scholar 

  36. J. H. Cantrell, Ultrasonics International 1989 Conference Proc. (Butterworth, Guildford, Surrey, U.K.), to be published.

    Google Scholar 

  37. See, for example, J. F. Currie, J. A. Krumhansl, A. R. Bishop, and S. E. Trullinger, Phys. Rev. B 22, 477 (1980).

    Article  MathSciNet  Google Scholar 

  38. H. Huang, W. T. Yost, and J. H. Cantrell, Proc. IEEE Ultrasonics Symposium, IEEE Cat. No. 87CH2492–7 ( Institute of Electrical and Electronics Engineers, New York, 1987 ), p. 1131.

    Google Scholar 

  39. S. Razvi. W. T. Yost, in Review of Progress in Quantitative Nondestructive Evaluation, vol. 6, edited by D. O. Thompson and D. E. Chimenti ( Plenum, New York, 1987 ).

    Google Scholar 

  40. J. H. Cantrell, W. T. Yost, S. Razvi, P. Li, and K. Salama, Proc. IEEE Ultrasonics Symposium, IEEE Cat, No. 86CH2375–4 ( Institute of Electrical and Electronics Engineers, New York, 1986 ), p. 1075.

    Google Scholar 

  41. O. Buck and G. A. Alers, in Fatigue and Microstructure (American Society for Metals, Metals Park, Ohio, 1979 ), p. 101.

    Google Scholar 

  42. W. T. Yost and J. H. Cantrell, in Review of Progress in Ouantitative Nondestructive Evaluation, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1990), this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cantrell, J.H., Yost, W.T. (1990). Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Effects of Crystalline and Amorphous Structures. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5772-8_214

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5772-8_214

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5774-2

  • Online ISBN: 978-1-4684-5772-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics