Skip to main content

Input from Serial Sections

  • Chapter
Computer Techniques in Neuroanatomy

Abstract

Serial section reconstruction has a wide range of applications. The technique of serial section reconstruction is used to build models of all kinds of structures, both biological and mechanical. Indeed, examples of serial section reconstruction can be found in boat building, dentistry, and the manufacturing of machine parts. We limit this chapter to the use of serial section reconstruction in neuroanatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For Further Reading

  • Boivie, J. G., G. Grant, and H. Ulfendahl (1968). The X-Y recorder used for mapping under the microscope. Acta Physiol. Scand. 74:Al-A2.

    Google Scholar 

  • Patterson, H. A., W. B. Wan, and A. J. Kleinman (1976). A mapping device for attachment to the light microscope. Technical note. Brain Res. 102: 323–328.

    PubMed  CAS  Google Scholar 

  • Eidelberg, E., and F. Davis (1977). An improved electronic pantograph. J. Histochem. Cytochem. 25: 1016–1018.

    PubMed  CAS  Google Scholar 

  • Reed, D. J., R. Gold, and D. R. Humphrey (1980). A simple computerized system for plotting the locations of cells of specified sizes in a histological section. Neurosci. Lett. 20: 233–236.

    PubMed  CAS  Google Scholar 

  • Davis, B. J. (1985). The electronic pantograph: Amplifier couples microscope stage to X-Y plotter. Brain Res. Bull. 15: 533–536.

    PubMed  CAS  Google Scholar 

  • Forbes, D. J., and R. W. Petry (1979). Computer-assisted mapping with the light microscope. J. Neurosci. Methods 1: 77–94.

    PubMed  CAS  Google Scholar 

  • Williams, F. G., and R. Elde (1982). A microcomputer-aided system for the graphic reproduction of neurohistochemical maps. Comput. Prog. Biomed. 15: 93–102.

    CAS  Google Scholar 

  • Mize, R. R. (1983a). A computer electron microscope plotter for mapping spatial distributions in biological tissues. J. Neurosci. Methods 8: 183–195.

    PubMed  CAS  Google Scholar 

  • Mize, R. R. (1985b). A microcomputer plotter for use with light and electron microscopes. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 112–133.

    Google Scholar 

  • Prothero, J. S., M. Riggins, A. Lindsay, R. Harris, and J. W. Prothero (1985). Three-dimensional reconstruction from serial sections. III. AUTOSCAN, a software package in FORTRAN for semiautomated photomicrography. Comput. Biomed. Res. 18: 132–136.

    PubMed  CAS  Google Scholar 

  • Dykes, E., and J. G. Clement (1980). The construction and application of an X-Y coordinate plotting microscope. J. Dent. Res. 59: 1800.

    Google Scholar 

  • Foote, S. L., S. E. Loughlin, P. S. Cohen, F. E. Bloom, and R. B. Livingston (1980). Accurate three-dimensional reconstruction of neuronal distributions in brain: Reconstruction of the rat nucleus locus coeruleus. J. Neurosci. Methods 3: 159–173.

    PubMed  CAS  Google Scholar 

  • Afshar, F., and E. Dykes (1982). A three-dimensional reconstruction of the human brain stem. J. Neurosurg. 57: 491–495.

    PubMed  CAS  Google Scholar 

  • Zsuppán, F. (1985). A computer reconstruction system for biological macro-and microstructures traced from serial sections. Acta Morphol. Hung. 33 (1–2): 33–44.

    PubMed  Google Scholar 

  • Upfold, J. B., M. S. R. Smith, and M. J. Edwards (1987). Three-dimensional reconstruction of tissue using computer-generated images. J. Neurosci. Methods 20: 131–138.

    PubMed  CAS  Google Scholar 

  • Afshar, F., and E. Dykes (1982). A three-dimensional reconstruction of the human brain stem. J. Neurosurg. 57: 491–495.

    PubMed  CAS  Google Scholar 

  • Afshar, F., and E. Dykes (1984). Computer-generated three-dimensional visualization of the trigeminal nuclear complex. Surg. Neurol. 22: 189–196.

    PubMed  CAS  Google Scholar 

  • Sivapragasam, S., J. G. Clement, and E. Dykes (1982). A three-dimensional assessment of dental asymmetry in human maxillary first premolar teeth. Acta Stereol. 82: 297–304.

    Google Scholar 

  • Cowan, W. M., and D. F. Wann (1973). A computer system for the measurement of cell and nuclear sizes. J. Microsc. (Oxf.) 99: 331–448.

    CAS  Google Scholar 

  • Dunn, R. F., O’Leary, D. P., and Kumley, W. E. (1975). Quantitative analysis of micrographs by computer graphics. J. Microsc. (Oxf.) 105: 205–213.

    CAS  Google Scholar 

  • Dunn, R. F., D. P. O’Leary, and W. E. Kumley (1977). Online computerized analysis of peripheral nerves. In: Computer Analysis of Neuronal Structures ( R. D. Lindsay, ed.). New York: Plenum Press, pp. 111–132.

    Google Scholar 

  • Curcio, C. A., and K. R. Sloan (1981). A computer system for combined neuronal mapping and morphometry. J. Neurosci. Methods 4: 267–276.

    PubMed  CAS  Google Scholar 

  • McKanna, J. A. (1985). Micros applied to neuroanatomy: Computer-aided morphometry. In: Microcomputers in the Neurosciences ( G. A. Kerkut, ed.). Oxford: Clarendon Press, pp. 152–201.

    Google Scholar 

  • McKanna, J. A., and V. A. Casagrande (1985). Computerized radioautographic grain counting. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 356–373.

    Google Scholar 

  • DeVoogd, T. J., F. L. F. Chang, M. K. Floeter, M. J. Jencius, and W. T. Greehough (1981). Distortions induced in neuronal quantification by camera lucida analysis: Comparisons using a semiautomated data acquisition system. J. Neurosci. Methods 3: 284–294.

    Google Scholar 

  • Pullen, A. H. (1982). A structured program in BASIC for the analysis of peripheral nerve morphometry. J. Neurosci. Methods 5: 103–120.

    PubMed  CAS  Google Scholar 

  • Usson, Y., S. Torch, and G. Douret d’Aubigny (1987). A method for automatic classification of large and small myelinated fibre populations in peripheral nerves. J. Neurosci. Methods 20: 237–248.

    PubMed  CAS  Google Scholar 

  • Becker, L. E., D. L. Armstrong, and F. Chan (1986). Dendritic atrophy in children with Down’s syndrome. Ann. Neurol. 20: 520–526.

    PubMed  CAS  Google Scholar 

  • Brown, P. B., G. R. Busch, and J. Whittington (1979). Anatomical changes in cat dorsal horn cells after transection of a single dorsal root. Exp. Neurol. 64: 453–468.

    PubMed  CAS  Google Scholar 

  • Tamamaki, N., K. Abe, and Y. Nojyo (1988). Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res. 452: 255–272.

    PubMed  CAS  Google Scholar 

  • Vaughn, J. E., R. P. Barber, and T. J. Sims (1988). Dendritic development and preferential growth into synaptogenic fields: A quantitative study of Golgi-impregnated spinal motor neurons. Synapse 2: 69–78.

    PubMed  CAS  Google Scholar 

  • Cornelisse, J. T. W. A., and T. J. T. P. van den Berg (1984). Profile boundary length can be overestimated by as much as 41% when using a digitizer tablet. J. Microsc. 136 (3): 341–344.

    Google Scholar 

  • Levinthal, C., and R. Ware (1972). Three dimensional reconstruction from serial sections. Nature 236: 207–210.

    Google Scholar 

  • Capowski, J. J. (1973). A general purpose 3D physical modeling program. Comput. Graphics 7 (3): 24–28.

    Google Scholar 

  • Prothero, J. W., A. Tamarin, and R. Pickering (1973). Morphometrics of living specimens. A methodology for the quantitative three-dimensional study of growing microscopic embryos. J. Microscp. 101 (1): 31–58.

    Google Scholar 

  • Willey, T. J., R. L. Schultz, and A. H. Gott (1973). Computer graphics in three dimensions for perspective reconstruction of brain ultrastructure. IEEE Trans. Biomed. Eng. 20: 288–291.

    PubMed  CAS  Google Scholar 

  • Levinthal, C., E. R. Macagno, and C. Tountas (1974). Computer-aided reconstruction from serial sections. Fed. Proc. 33 (12): 2336–2340.

    PubMed  CAS  Google Scholar 

  • Caban, L. D., and B. T. Trombka (1975). Computer graphics three-dimensional reconstruction of thalamic anatomy from serial sections. Comput. Prog. Biomed. 5: 91–98.

    Google Scholar 

  • Ware, R. W., and V. LoPresti (1975). Three-dimensional reconstruction from serial sections. In: International Review of Cytology, Vol. 40 (G. H. Boume and J. F. Danielli, eds.). New York: Academic Press, pp. 325–440.

    Google Scholar 

  • Macagno, E. R., C. Levinthal, C. Tountas, R. Bornholdt, and R. Abba (1976). Recording and analysis of 3-D information from serial section micrographs: The CARTOS system. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 97–112.

    Google Scholar 

  • Veen, A., and L. D. Peachey (1977). TROTS: A computer graphics system for three-dimensional reconstruction from serial sections. Comput. Graphics 2: 135–150.

    Google Scholar 

  • Macagno, E. R. (1978). Mapping synaptic sites between identified neuronsin leech CNS by means of 3-D computer reconstructions from serial sections. Brain Theory Newsl. 3 (3/4): 186–189.

    Google Scholar 

  • Shantz, M. J., and G. D. McCann (1978). Computational morphology: Three-dimensional computer graphics for electron microscopy. IEEE Trans. Biomed. Eng. 25: 99–103.

    PubMed  CAS  Google Scholar 

  • Marino, T. A., P. Nong Cook, L. T. Cook, and S. J. Dwyer III (1980). The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions. Anat. Rec. 198: 537–546.

    PubMed  CAS  Google Scholar 

  • Stevens, J. K., T. L. Davis, N. Friedman, and P. Sterling (1980a). A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Res. Rev. 2: 265–293.

    CAS  Google Scholar 

  • Moens, P. B., and T. Moens (1981). Computer measurements and graphics of three-dimensional cellular ultrastructure. J. Ultrastruct. Res. 75: 131–141.

    PubMed  CAS  Google Scholar 

  • Briarty, L. G., J. Patrick, J. Fisher, and P. H. Jenkins (1982). Microscopy, morphology and microcomputers. Acta Stereol. 82: 227–234.

    Google Scholar 

  • Chawla, S. D., L. Glass, S. Friewald, and J. W. Procter (1982). An interactive computer graphic system for 3-D steroscopic reconstruction from serial sections: Analysis of metastatic growth. Comput. Biol. Med. 12 (3): 223–232.

    PubMed  CAS  Google Scholar 

  • Falen, S. W., and D. S. Packard, Jr. (1982). Computer-assisted stereoscopic reconstruction of biological tissues. Proc. Natl. Comput. Graphics Assn. 2: 995–1003.

    Google Scholar 

  • Perkins, W. J., and R. J. Green (1982). Three-dimensional reconstruction of biological sections. J. Biomed. Eng. 4: 37–43.

    PubMed  CAS  Google Scholar 

  • Prothero, J. S.. and J. W. Prothero (1982). Three-dimensional reconstruction from serial sections. I. A portable microcomputer-based software package in FORTRAN. Comput. Biomed. Res. 15: 598–604.

    PubMed  CAS  Google Scholar 

  • Freeman, J., and R. S. Meltzer (1983). CARTOS revives biological approach from turn of century. Comput. Graphics News May/June: 17–18.

    Google Scholar 

  • Gras, H., and F. Killman (1983). NEUREC-a program package for 3-D reconstruction from serial sections using a microcomputer. Comput. Prog. Biomed. 17: 145–156.

    CAS  Google Scholar 

  • Hengstenberg, R., H. Bulthoff, and B. Hengstenberg (1983). Three-dimensional reconstruction and stereoscopic display of neurons in the fly visual system. In: Functional Neuroanatomy ( N. J. Strausfeld, ed.). Berlin: Springer-Verlag, pp. 183–205.

    Google Scholar 

  • Johnson, E. M., and J. J. Capowski (1983). A system for the three-dimensional reconstruction of biological structures. Comput. Biomed. Res. 16: 79–87.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M., and J. J. Capowski (1985). Principles of reconstruction and three-dimensional display of serial sections using a computer. In: The Microcomputer in Cell and Neurobiology Research ( R. R. Mize, ed.). New York: Elsevier, pp. 249–263.

    Google Scholar 

  • Speck, P. T., and N. J. Strausfeld (1983). Portraying the third dimension in neuroanatomy. In: Functional Neuroanatomy ( N. J. Strausfeld, ed.). Berlin: Springer-Verlag, pp. 156–182.

    Google Scholar 

  • Street, C. H., and R. R. Mize (1983). A simple microcomputer-based three-dimensional serial section reconstruction system (Micuos). J. Neurosci. Methods 7: 359–375.

    PubMed  CAS  Google Scholar 

  • Sundsten, J. W., and J. W. Prothero (1983). Three-dimensional reconstruction from serial sections: II. A microcomputer-based facility for rapid data collection. Anat. Rec. 207: 665–671.

    PubMed  CAS  Google Scholar 

  • Stevens, J. K., and J. Trogadis (1984). Computer-assisted reconstruction from serial electron micrographs: A tool for the systematic study of neuronal form and function. Adv. Cell. Neurobiol. 5: 341–369.

    Google Scholar 

  • Young, S. L., E. K. Fram, and B. L. Craig (1985). Three-dimensional reconstruction and quantitative analysis of rat lung type II cells: a computer-based study. Am. J. Anat. 174: 1–14.

    PubMed  CAS  Google Scholar 

  • Young, S. L., E. K. Fram, and B. L. Craig (1985). Three-dimensional reconstruction and quantitative analysis of rat lung type II cells: a computer-based study. Am. J. Anat. 174: 1–14.

    PubMed  CAS  Google Scholar 

  • Young, S. L., S. Royer, P. M. Groves, and J. C. Kinnamon (1987). Three-dimensional reconstructions from serial micrographs using the IBM PC. J. Electron Microsc. Tech. 6: 207–217.

    Google Scholar 

  • Braverman, M. S., and I. M. Braverman (1986). Three-dimensional reconstruction of objects from serial sections using a microcomputer graphics system. J. Invest. Dermatol. 86: 290–294.

    PubMed  CAS  Google Scholar 

  • Sinha, U. K., L. I. Terr, F. R. Galey, and F. H. Linthicum (1987). Computer-aided three-dimensional reconstruction of the cochlear nerve root. Arch. Otolaryngol. Head Neck Surg. 113: 651–655.

    PubMed  CAS  Google Scholar 

  • Smith, R. G. (1987). MONTAGE: A system for three-dimensional reconstruction by personal computer. J. Neurosci. Methods 21: 55–69.

    PubMed  CAS  Google Scholar 

  • Yaegashi, H., T. Takahashi, and M. Kawasaki (1987). Microcomputer-aided reconstruction: A system designed for the study of 3-D microstructure in histology and histopathology. J. Microsc. 146 (1): 55–65.

    PubMed  CAS  Google Scholar 

  • Lopresti, V., E. R. Macagno, and C. Levinthal (1973). Structure and development of neuronal connections in isogenic organisms: Cellular interactions in the development of the optic lamina of Daphnia. Proc. Natl. Acad. Sci. U.S.A. 70 (2): 433–437.

    CAS  Google Scholar 

  • Macagno, E. R., C. Levinthal, C. Tountas, R. Bornholdt, and R. Abba (1976). Recording and analysis of 3-D information from serial section micrographs: The CARTOS system. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 97–112.

    Google Scholar 

  • Kimura, O., E. Dykes, and R. W. Fearnhead (1977). The relationship between the surface area of the enamel crowns of human teeth and that of the dentine-enamel junction. Arch. Oral Biol. 22: 677–683.

    PubMed  CAS  Google Scholar 

  • Ellias, S. A., and J. K. Stevens (1980). The dendritic varicosity: A mechanism for electrically isolating the dendrites of cat retinal amacrine cells? Brain Res. 196: 365–372.

    PubMed  CAS  Google Scholar 

  • Harris, K. M., and J. K. Stevens (1988). Study of dendritic spines by serial electron microscopy and three-dimensional reconstructions. In: Intrinsic Determinants of Neuronal Form and Function ( R. J. Lasek and M. M. Black, eds.). New York: Alan R. Liss, pp. 179–199.

    Google Scholar 

  • Chawla, S. D., L. Glass, and J. W. Procter (1981). Three-dimensional reconstruction of disseminated cancer modules. Cancer Biochem. Biophys. 5: 153–161.

    PubMed  CAS  Google Scholar 

  • German, D. C., D. S. Schlusselberg, and D. J. Woodward (1983). Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man. Neural Transm. 57: 243–254.

    CAS  Google Scholar 

  • Sasaki, S., J. K. Stevens, and N. Bodick (1983). Serial reconstruction of microtubular arrays within dendrites of the cat retinal ganglion cell: The cytoskeleton of a vertebrate dendrite. Brain Res. 259: 193–206.

    PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer, S. A., D. L. Balkwill, and S. E. Stevens, Jr. (1983). Use of a computer-aided reconstruction system to examine the three-dimensional architecture of cyanobacteria. J. Ultrastruc. Res. 84: 73–82.

    CAS  Google Scholar 

  • Spacek, J., and M. Hartmann (1983). Three-dimensional analysis of dendritic spines. Anat. Embryol. 167: 289–310.

    PubMed  CAS  Google Scholar 

  • Thompson, R. P., Y. M. Wong, and T. F. Fitzharris (1983). A computer graphic study of cardiac truncal septation. Anat. Rec. 206: 207–214.

    Google Scholar 

  • Stevens, J. K., and J. Trogadis (1984). Computer-assisted reconstruction from serial electron micrographs: A tool for the systematic study of neuronal form and function. Adv. Cell. Neurobiol. 5: 341–369.

    Google Scholar 

  • Slepecky, N., H. Larsen, and C. Angelborg (1984). Computerized reconstruction of the regional blood flow in the rodent cochlea. Hearing Res. 15: 95–101.

    CAS  Google Scholar 

  • Gambino, D. R., L. T. Malmgren, and R. R. Gacek (1985). Three-dimensional computer reconstruction of the neuromuscular junction distribution in the human posterior cricoarytenoid muscle. Laryngoscope 95 (5): 556–560.

    PubMed  CAS  Google Scholar 

  • Greenberg, M., J. Stevens, and S. Ellias (1985). Highly irregular shapes of normal type C axons: Serial EM study. Soc. Neurosci. Abstr. 11: 184. 4.

    Google Scholar 

  • Antal, M., R. Kraftsik, G. Székely, and H. van der Loos (1986). Distal dendrites of frog motor neurons: A computer-aided electron microscopic study of cobalt-filled cells. J. Neurocytol. 15: 303–310.

    PubMed  CAS  Google Scholar 

  • Coombs, G. H., L. Tetley, V. A. Moss, and K. Vickerman (1986). Three dimensional structure of the leishmania amastigote as revealed by computer-aided reconstruction from serial sections. Parasitology 92: 13–23.

    PubMed  Google Scholar 

  • Henson, O. W., and M. M. Henson (1986). Morphometric analysis of cochlear structures in the mustached bat, Pteronotus parnellii parnellii. In: 3rd International Symposium on Animal Sonar Systems. Helsingor, Denmark. New York: Plenum Press, pp. 301–305.

    Google Scholar 

  • Jacobs, J. R., and J. K. Stevens (1986). Changes in the organization of the neuritic cytoskeleton during nerve growth factor-activated differentiation of the PC12 cells: A serial electron microscopic study of the development and control of neufite shape. J. Cell Biol. 103: 895–906.

    PubMed  CAS  Google Scholar 

  • Mercer, R. R., and J. D. Crapo (1987). Three-dimensional reconstruction of the rat acinus. J. Appl. Physiol. 63 (2): 785–794.

    PubMed  CAS  Google Scholar 

  • Villa, A. E. P., M. Bruchez, G. M. Simm, and S. Jeandrevin (1987). A computer-aided three-dimensional reconstruction of brain structures using high level computer graphics. Int. J. Biomed. Comput. 20: 289302.

    Google Scholar 

  • Harris, K. M., and J. K. Stevens (1988). Study of dendritic spines by serial electron microscopy and three-dimensional reconstructions. In: Intrinsic Determinants of Neuronal Form and Function ( R. J. Lasek and M. M. Black, eds.). New York: Alan R. Liss, pp. 179–199.

    Google Scholar 

  • Kinnamon, J. C., T. A. Sherman, and S. D. Roper (1988). Ultrastructure of mouse vallate taste buds: III. Patterns of synaptic connectivity. J. Comp. Neurol. 270: 1–10.

    PubMed  CAS  Google Scholar 

  • Royer, S. M., and J. C. Kinnamon (1988). Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J. Comp. Neurol. 270: 11–24.

    PubMed  CAS  Google Scholar 

  • Stevens, J. K., J. Trogadis, and J. R. Jacobs (1988). Development and control of axial neurite form: A serial electron microscopic analysis. In: Intrinsic Determinants of Neuronal Form and Function ( R. J. Lasek and M. M. Black, eds.). New York: Alan R. Liss, pp. 115–145.

    Google Scholar 

  • Wind, G., R. W. Finley, and N. M. Rich (1988). Three-dimensional computer graphics modeling of ballistic injuries. J. Trauma 28 (1): S16 - S20.

    PubMed  CAS  Google Scholar 

  • Capowski, J. J. (1977). Computer-aided reconstruction of neuron trees from several serial sections. Comput. Biomed. Res. 10: 617–629.

    PubMed  CAS  Google Scholar 

  • Capowski, J. J., and M. J. Sedivec (1981). Accurate computer reconstruction and graphics display of complex neurons utilizing state-of-the-art interactive techniques. Comput. Biomed. Res. 14: 518–532.

    PubMed  CAS  Google Scholar 

  • Prothero, J. S., and J. W. Prothero (1986). Three-dimensional reconstruction from serial sections IV. The reassembly problem. Comput. Biomed. Res. 19: 361–373.

    PubMed  CAS  Google Scholar 

  • Dierker, M. L. (1976a). An algorithm for the alignment of serial sections. In: Computer Technology in Neuroscience ( P. B. Brown, ed.). Washington, DC: Hemisphere, pp. 131–133.

    Google Scholar 

  • Gentile, A. M., and E. Harth (1978). The alignment of serial sections by spatial filtering. Comput. Biomed. Res. 11: 537–551.

    PubMed  CAS  Google Scholar 

  • Fahle, M. (1988). The double microscope: Its use in three-dimensional reconstruction from serial sections. J. Neurosci. Methods 23: 95–99.

    PubMed  CAS  Google Scholar 

  • West, M. J. (1985). Neuroanatomical modeling with CADCAM. Soc. Neurosci. Abstr. 11: 184. 6.

    Google Scholar 

  • Ameil, M., J. F. Delattre, B. Cordobes, and J. B. Flament (1984). Computerized reconstruction of an anatomical structure based on digitized sections. Anat. Clin. 5: 261–264.

    PubMed  CAS  Google Scholar 

  • Wind, G., V. K. Dvorak, and J. A. Dvorak (1986). Computer graphic modeling in surgery. Orthop. Clin. North Am. 17 (4): 657–668.

    PubMed  CAS  Google Scholar 

  • Woolsey, T. A., and M. L. Dierker (1978). Computer-assisted recording of neuroanatomical data. In: Neuroanatomical Research Techniques ( R. T. Robertson, ed.). New York: Academic Press, pp. 4785.

    Google Scholar 

  • Woolsey, T. A., and M. L. Dierker (1982). Morphometric approaches to neuroanatomy with emphasis on computer-assisted techniques. In: Cytochemical Methods in Neuroanatomy ( V. Chan-Palay and S. L. Palay, eds.). New York: Alan R. Liss, pp. 69–91.

    Google Scholar 

  • Sobel, I., C. Levinthal, and E. R. Macagno (1980). Special techniques for the automatic computer reconstruction of neuronal structures. Annu. Rev. Biophys. Bioeng. 9: 347–362.

    PubMed  CAS  Google Scholar 

  • Huijsmans, D. P., W. H. Lamers, J. A. Los, and J. Strackee (1986). Toward computerized morphometric facilities: A review of 58 software packages for computer-aided three-dimensional reconstruction, quantification and picture generation from parallel serial sections. Anat. Rec. 216: 449–470.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Capowski, J.J., Johnson, E.M. (1989). Input from Serial Sections. In: Computer Techniques in Neuroanatomy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5691-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5691-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5693-6

  • Online ISBN: 978-1-4684-5691-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics