Skip to main content

The Polyamine Metabolism of Filarial Worms as Chemotherapeutic Target

  • Chapter
Progress in Polyamine Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 250))

Abstract

Parasite-specific putrescine-N-acetyltransferase and polyamine oxidase, both involved in the reversed pathway of polyamine metabolism, were demonstrated for Ascaris suum and Onchocerca volvulus. Berenil-treatment was found to be correlated with accumulation of polyamines, especially spermine, obviously due to blockaded polyamine interconversion. Furthermore it was shown that added spermine to the culture medium led to the death of worms. These specificities might be exploited for chemotherapy of filarial infections.

Polyamines are widely distributed in the nature. They are found in higher and lower eucaryotes and in procaryotes as well as in viruses (Tabor and Tabor, 1984). During the last years there have been many approaches to examine the role of polyamines in cell growth and differentiation in vertebrates (Tabor and Tabor, 1984; Pegg, 1986). The polyamine metabolism of parasites also has attracted increasing interest, e. g. in African trypanosomes the initial enzyme of polyamine synthesis — ornithine decarboxylase — has been exploited as a target for chemotherapy by using DFMO (DLα-difluoro-methylornithine) (Bacchi et al., 1980; Bacchi et al., 1983; Fairlamb et al., 1985; Giffin et al., 1986).

The polyamine metabolism of filaria and other helminths is still a neglected area of research, although there are reports about distribution pattern of polyamines and some peculiarities of polyamine metabolism in filarial worms (Srivastava et al., 1980; Wittich et al., 1987; Walter, 1988). DFMO and MGBG (methylglyoxal bis-(guanylhydrazone)), both of which are potent inhibitors of polyamine synthesis in mammals, do not significantly effect the viability of filarial worms (Wittich et al., 1987). If synthesis via ornithine as well as arginine decarboxylase could finally be denied, the absolute dependence of filarial worms on their host for a supply with polyamines would offer some leads for chemotherapy of river blindness and lymphatic fila-riasis. It should be demonstrated for filaria and other helminths that blockade and disturbance of polyamine synthesis and distribution leads to death of worms. Furthermore the enzymes involved in the interconversion pathway should be identified and their potential as targets for design and developement of enzyme inhibitors to antifilarial drugs should be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bacchi, C. J., Nathan, H. C., Hunter, S. H., 1980, Polyamine metabolism: A potential therapeutic target in trypanosomes, Science, 210: 332–334.

    Article  PubMed  CAS  Google Scholar 

  • Bacchi, C. J., Garofalo, J., Mockenhaupt, D., McCann, P. P., Diekema, K. A., Pegg, A. E., Nathan, H. C., Mullany, E. A., Chunosoff, L., Sjoerdsma, A., Hunter, S. H., 1983, In vivo effects of-D, L-difluoromethyl-ornithine on the metabolism and morphology of trypanosoma brucei brucei, Mol. Biochem., Parasitol., 7: 209–225.

    Article  CAS  Google Scholar 

  • Balana-Fouce, R., Garzon-Pulido, T., Ordonez-Escudero, D., and Garrido-Pertierra, A., 1986, Inhibition of diamine oxidase and S-adenosyl-methionine decarboxylase by diminaceneaceturate (berenil), Biochem.Pharmacol., 35(9): 1597–1600.

    Article  PubMed  CAS  Google Scholar 

  • Bey, P., Bolkenius, F. N., Seiler, N., and Casara, P., 1985, N-2, 3-butadienyl-1, 4-butanediamine derivatives: Potent irreversible inactivators of mammalian polyamine oxidase, J. Med. Chem., 28(l): 1–2.

    Article  PubMed  CAS  Google Scholar 

  • Bitonti, A. J., Dumont, J. A., and McCann, P. P., 1986, Characterisation of trypanosoma brucei brucei S-adenosyl-L-metnionine decarboxylase and its inhibition by berenil, pentamidine and methylglyoxal bis(guanyl-hydrazone), Biochem. J., 237: 685–689.

    PubMed  CAS  Google Scholar 

  • Bolkenius, F. N., and Seiler, N., 1987, The role of polyamine reutilization in depletion of cellular stores of polyamines in non-proliferating tissues, Biochem. Biophys. Acta, 923: 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Fairlamb, A. H., Blackburn, P., Ulrich, P., Chait, B. F., and Cerami, A., 1985, Trypanothione. A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids, Science, 227: 1485–1487.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante, A., Ljungstrom, I., Rzepzyk, C. M., and Morgan, D. M. L., 1986, Differences in sensitivity of Schistosoma mansoni schistosomula, Dirofilaria immitis microfilariae and Nematospiroides dubius third-stage larvae to damage by polyamine oxidase-polyamine system, Infect.Immun., 53(3): 606–610.

    PubMed  CAS  Google Scholar 

  • Franke, E. D., and Weinstein, P. P., 1983, Dipetalonema vitae (Nematoda: Filarioidea): Culture of third-stage larvae to young adults in vitro, Science, 221: 161–163.

    Article  PubMed  CAS  Google Scholar 

  • Giffin, B. F., McCann, P. P., Bitonti, A. J., and Bacchi, C. J., 1986, Polyamine depletion following exposure to DL-difluoromethylornithine both in vivo and in vitro initiates morphological alterations and mitochondrial activation in a monomorphic strain of trypanosoma brucei brucei, J. Protozool., 33(2): 238–243.

    PubMed  CAS  Google Scholar 

  • Karvonen, E., Kauppinen, L., Partanen, T., and Pösö, H., 1985, Irreversible inhibition of putrescine-stimulated S-adenosyl-L-methionine decarboxylase by berenil and pentamidine, Biochem. J., 231: 165–169.

    PubMed  CAS  Google Scholar 

  • Libby, P. R., 1978, Calf liver nuclear N-acetyltransferase, J. Biol. Chem., 253: 233–237.

    PubMed  CAS  Google Scholar 

  • Libby, P. R., 1980, Rat liver nuclear N-acetyltransferase: Seperation of two enzymes with both histone and spermidine acetyltransferase activity, Arch. Biochem. Biophys., 203: 384–389.

    Article  PubMed  CAS  Google Scholar 

  • McCann, P. P., Bacchi, C. J., Nathan, H. C, and Sjoerdsma, A., 1983, in “Mechanism of Drug Action”, T. P. Singer and R. N. Ordarza, eds., Academic Press, New York.

    Google Scholar 

  • Morgan, D. M. L., Bachrach, U., Assaraf, Y. G., Harari, E., and Golenser, J., 1986, The effect of purified aminoaldehydes produced by polyamine oxidation on developement in vitro of Plasmodium falciparum in normal and glucose-6-phosphate-dehydrogenase-deficient erythrocytes, Biochem. J., 236: 97–101.

    PubMed  CAS  Google Scholar 

  • Müller, S., and Walter, R. D., 1988, Effect of berenil and spermine on viability and polyamine metabolism of filarial worms in vitro, International Symposium on Polyamines in Biochemistry and Clinical research, Sorrento, Naples, Italy, 13-17 June 1988 (Abstract).

    Google Scholar 

  • Müller, S., Wittich, R.-M., and Walter, R. D., Characteristics and function of polyamine oxidase in nematodes, Zbl. Bakt. Hyg., in press.

    Google Scholar 

  • Pegg, A. E., 1986, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J., 234: 249–262.

    PubMed  CAS  Google Scholar 

  • Rathauer, S., Wittich, R.-M., and Walter, R. D., 1988, Ascaris suum and Onchocerca volvulus: S-adenosylmethionine decarboxylase, Exp. Parasitol., 65: 277–281.

    Article  Google Scholar 

  • Seiler, N., and Al-Therib, M. J., 1974, Putrescine catabolism in mammalian brain, Biochem. J., 144: 29–35.

    PubMed  CAS  Google Scholar 

  • Srivastava, D. K., Roy, T. K., and Shukla, O. P., 1980, Polyamines of helminths, Ind. J. Parasitol., 4(2): 187–189.

    CAS  Google Scholar 

  • Tabor, C. W., and Tabor, H., 1984, Polyamines, Annu. Rev. Biochem., 53: 749–790.

    Article  PubMed  CAS  Google Scholar 

  • Walter R. D., 1988, Polyamine metabolism in filaria and allied parasites, Parasitol. Today, 4(4): 18–20.

    Article  PubMed  CAS  Google Scholar 

  • Williams-Ashman, H. G., and Seidenfeld, J., 1986, Aspects of the biochemical pharmacology of methylglyoxal bis(guanylhydrazone), Biochem. Pharmacol., 35(8): 1217–1225.

    Article  PubMed  CAS  Google Scholar 

  • Wittich, R.-M., Kilian, H.-D., and Walter, R. D., 1987, Polyamine metabolism in filarial worms, Mol. Biochem. Parasitol., 24: 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Wittich, R.-M., and Walter, R. D., 1988, A novel putrescine (diamine) N-acetyltransferase from Onchocerca volvulus and Ascaris suum, International Symposium on Polyamines in Biochemistry and Clinical Research, Sorrento, Naples, Italy, 13-17 June 1988 (Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Müller, S., Wittich, RM., Walter, R.D. (1988). The Polyamine Metabolism of Filarial Worms as Chemotherapeutic Target. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_65

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics