Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 49))

Abstract

Catalases (H2O2:H2O2 oxidoreductase; EC 1.11.1.6) are metalloenzymes that catalyze the elimination of H2O2 according to the equation:

Catalases, together with superoxide dismutases and peroxidases, provide aerobic cells with a defense system for removal of superoxide radical and of hydroperoxides. H2O2 is a cellular toxicant in its own right. Considerable interest in the production of hydroxyl radical by the reduction of H2O2 (equation 2)

mediated by transition metals or other cellular reductants has arisen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Poole, B. S. Baines, and C. A. Appleby, Haemoprotein b-590 (Escherichia coli), a reducible catalase and peroxidase: Evidence for its close relationship to hydroperoxidase I and a cytochrome alb preparation, J. Gen. Microbiol. 132:1525 (1986).

    PubMed  CAS  Google Scholar 

  2. A. Claiborne, D. Malinowski, and I. Fridovich, Purification and characterization of hydroperoxidase II of Escherichia coli B, J. Biol. Chem. 254:11664 (1979).

    PubMed  CAS  Google Scholar 

  3. A. Claiborne, and I. Fridovich, Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characteri zation and analysis of its dual catalatic and peroxidatic activities, J. Biol. Chem. 254:4245 (1979).

    PubMed  CAS  Google Scholar 

  4. P. C. Loewen and J. Switala, Purification and characterization of catalase HPII from Escherichia coli K12, Biochem. Cell. Biol. 64:638 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. M. Pegg, D. Crane, and C. Masters, Confirmation that catalase is a glycoprotein, Biochem. Int. 12:831 (1986).

    PubMed  CAS  Google Scholar 

  6. S. Morikofer-Zwey, M. Cantz, H. Kaufman, J. P. von Wartburg, and H. Aebi, Heterogeneity of erythrocyte catalase. Correlations between sulfhydryl group content, chromatographic and electrophoretic properties. Eur. J. Biochem. 11:49 (1969).

    Article  Google Scholar 

  7. G. R. Schonbaum and B. Chance, Catalase, in: “The Enzymes,” vol. 13, P. Boyer, ed., Academic Press, New York (1976).

    Google Scholar 

  8. H. Furuta, A. Hachimori, Y. Ohta, and T. Samejima, Dissociation of bovine liver catalase into subunits on acetylation, J. Biochem. 76:481 (1974).

    PubMed  CAS  Google Scholar 

  9. H. Aebi, S. R. Wyss, B. Schorz, and F. Skvaril, Heterogeneity of erythrocyte catalase. II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits, Eur. J. Biochem. 48:137 (1974).

    Article  PubMed  CAS  Google Scholar 

  10. D. Dolphin, A. Forman, D. C. Borg, J. Fajer, and R. H. Felton, Compounds I of catalase and horseradish peroxidase: π-cation radicals, Proc. Natl. Acad. Sci. USA 68:614 (1971).

    Article  PubMed  CAS  Google Scholar 

  11. B. Chance, An intermediate compound in the catalase-hydrogen peroxide reaction, Acta Chem. Scand. 1:236 (1947).

    Article  CAS  Google Scholar 

  12. E. Margoliash and A. Novogrodsky. A study of the inhibition of catalase by 3-amino-l:2:4-triazole, Biochem. J. 68:468 (1958).

    PubMed  CAS  Google Scholar 

  13. E. G. DeMaster, B. Redfern, F. N. Shirota, and H. T. Nagasana, Differential inhibition of rat tissue catalase by cyanamide, Biochem. Pharmacol. 35:2081 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. D. Darr and I. Fridovich, Inhibition of catalase by 3,3′-diamino- benzidine, Biochem. J. 226:781 (1985).

    PubMed  CAS  Google Scholar 

  15. Y. Kono and I. Fridovich, Superoxide radical inhibits catalase, J. Biol. Chem. 257:5751 (1982).

    PubMed  CAS  Google Scholar 

  16. N. Shimizu, K. Kobayashi, and K. Hayashi, The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical, J. Biol. Chem. 259:4414 (1984).

    PubMed  CAS  Google Scholar 

  17. H. N. Kirkman and G. F. Gaetani, Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH, Proc. Natl. Acad. Sci. USA 81:4343 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. H. Aebi, Catalase in vitro, Meth. Enzvmol. 105:121 (1984).

    Article  CAS  Google Scholar 

  19. H. N. Kirkman, S. Galiano, and G. F. Gaetani, The function of catalase-bound NADH. J. Biol. Chem. 262:660 (1987).

    PubMed  CAS  Google Scholar 

  20. W. R. Melik-Adamyan, V. V. Barynin, A. A. Vagin, V. V. Borisov, B. K. Vainshtein, I. Fita, M. R. Murthy, and M. G. Rossman, Comparison of beef liver and Pénicillium vitale catalases. J. Mol. Biol. 188:63 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. B. K. Vainshtein, W. R. Melik-Adamyan, V. V. Barynin, A. A. Vagin, A. I. Grebenko, V. V. Borisov, K. S. Bartels, I. Fita, and M. G. Rossman, Three-dimensional structure of catalase from Penicillium vitale at 2.0A resolution, J. Mol. Biol. 188:49 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. E. A. Delwiche, Catalase of Pediococcus cerevisiae, J. Bacteriol. 81:416 (1961).

    PubMed  CAS  Google Scholar 

  23. M. A. Johnston and E. A. Delwiche, Catalase of the Lactobacillaceae, J. Bacteriol. 83: 936 (1962).

    PubMed  CAS  Google Scholar 

  24. D. Jones, D. H. Diebel, and C. F. Niven, Jr., Catalase activity of two Streptococcus feacalis strains and its enhancement by aerobiosis and added cations, J. Bacteriol. 88:602 (1964).

    PubMed  CAS  Google Scholar 

  25. M. A. Johnston and E. A. Delwiche, Distribution and characteristics of the catalases of Lactobacillaceae, J. Bacteriol. 90:347 (1965).

    PubMed  CAS  Google Scholar 

  26. M. A. Johnston and E. A. Delwiche, Isolation and characterization of the cyanide resistant and azide-resistant catalase of Lactobacillus plantarum, J. Bacteriol. 90:352 (1965).

    PubMed  CAS  Google Scholar 

  27. Y. Kono and I. Fridovich, Isolation and characterization of the pseudocatalase of Lactobacillus plantarum. A new manganese-containing enzyme, J. Biol. Chem. 258:6015 (1983).

    PubMed  CAS  Google Scholar 

  28. G. S. Allgood and J. J. Perry, Characterization of a manganese-containing catalase from the obligate Thermophile thermoleophilum album, J. Bacteriol. 168:563 (1986).

    PubMed  CAS  Google Scholar 

  29. V. V. Barynin and A. I. Grebenko, T-catalase-a nonheme catalase of the extremely thermophilic bacterium Thermus thermophilus HB8, Dokl. Acad. Nauk. SSSR 286:461 (1986).

    CAS  Google Scholar 

  30. W. F. Beyer, Jr., and I. Fridovich, Pseudocatalase from Lactobacillus plantarum: evidence for a homopentameric structure containing two atoms of manganese per subunit, Biochem. 24:6460 (1985).

    Article  CAS  Google Scholar 

  31. Y. Kono and I. Fridovich, Functional significance of manganese catalase in Lactobacillus plantarum, J. Bacteriol. 155:742 (1983).

    PubMed  CAS  Google Scholar 

  32. Y. Kono and I. Fridovich, Inhibition and reactivation of Mn-catalase. Implications for valence changes at the active site manganese, J. Biol. Chem. 258:13646 (1983).

    PubMed  CAS  Google Scholar 

  33. G. S. Allgood and J. J. Perry, Paraquat toxicity and effect of hydrogen peroxide on Thermophilic bacteria. J. Free Rad. Biol. Med. 1:233 (1985).

    Article  CAS  Google Scholar 

  34. W. F. Beyer, Jr., unpublished results.

    Google Scholar 

  35. F. S. Archibald and I. Fridovich, Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 145:442 (1981).

    PubMed  CAS  Google Scholar 

  36. F. S. Archibald and I. Fridovich, Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria, J. Bacteriol. 146: 928 (1981).

    PubMed  CAS  Google Scholar 

  37. B. Chance, The composition of catalase-peroxide complexes. J. Biol. Chem. 179:1311 (1949).

    PubMed  CAS  Google Scholar 

  38. G. E. Means and R. E. Feeney, “Chemical Modification of Proteins” Holden-Day, San Francisco, CA (1971).

    Google Scholar 

  39. G. E. Davies and G. R. Stark, Use of dimethyl suberimidate, a cross-linking reagent in studying the subunit structure of oligomeric proteins, Proc. Natl. Acad. Sci. USA 66:651 (1970).

    Article  PubMed  CAS  Google Scholar 

  40. Y. Kono, Mn-catalase of Lactobacillus plantarum: inhibition by carbonyl reagents, in “Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine,” G. Rotilio, ed., Elsevier (1986), p. 231.

    Google Scholar 

  41. B. B. Keele, Jr., J. M. McCord, and I. Fridovich, Superoxide dismutase from Escherichia coli B. A new manganese containing enzyme. J. Biol. Chem. 245:6176 (1970).

    PubMed  CAS  Google Scholar 

  42. J. J. Villafranca, F. J. Yost, Jr., and I. Fridovich, Magnetic resonance studies studies of manganese(III) and iron(III) superoxide dismutase. Temperature and frequency dependence of proton relaxation rates of water, J. Biol. Chem. 249:3532 (1974).

    PubMed  CAS  Google Scholar 

  43. W. F. Beyer, Jr., J. J. Villafranca, and I. Fridovich, unpublished results.

    Google Scholar 

  44. T. A. Kent, E. Munck, R. W. Dunham, W. F. Filter, K. L. Findling, T. Yoshida, and J. A. Fee, Mossbauer study of a bacterial cytochrome oxidase: cytochrome c1aa3 from Thermus thermophilus, J. Biol. Chem. 257:12489 (1982).

    PubMed  CAS  Google Scholar 

  45. S. V. Khangulov, V. V. Barynin, V. R. Melik-Adamyan, A. I. Grebenko, N. V. Voevodskaya, D. L. A. Blynmenfel, S. N. Dobryakov, and V. B. Il-Yasova, EPR study of T-catalase from Thermus thermophilus, Bioorq. Khim. 12:741 (1986).

    CAS  Google Scholar 

  46. V. V. Barynin, A. A. Vagin, V. R. Melik-Adamyan, A. I. Grebenko, S. V. Khangulov, A. N. Popov, M. E. Andrianonva, and B. K. Vainshtein, Three-dimensional structure of the T-catalase with a 3A resolution, Dokl. Acad. Nauk. SSSR 288:877 (1986).

    CAS  Google Scholar 

  47. J. E. Sheats, R. S. Czernuszewicz, G. C. Dismukes, A. L. Rheingold, V. Petroleas, J. Stubbe, W. H. Armstrong, R. H. Beer, and S. J. Lippard, Binuclear manganese(III) complexes of potential biological significance. J. Amer. Chem. Soc. 109:1435 (1987).

    Article  CAS  Google Scholar 

  48. K. Wrighardt, V. Bossek, J. Bonvoisin, P. Beauvillain, J. Girerd, B. Nuber, J. Weiss, and J. Heinze, Dinuclear manganese (II, III, IV) model complexes for the active center of the metalloprotein photosystemll: synthesis, magnetism, and crystal structure of [L MnIII (μ-0)(μ-CH3CO2)2 MnIVL][C104], Anqew. Chem. Int. Ed. 25:1030 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Beyer, W.F., Fridovich, I. (1988). Catalases—With and Without Heme. In: Simic, M.G., Taylor, K.A., Ward, J.F., von Sonntag, C. (eds) Oxygen Radicals in Biology and Medicine. Basic Life Sciences, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5568-7_103

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5568-7_103

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5570-0

  • Online ISBN: 978-1-4684-5568-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics