Skip to main content

Probing Enzyme-Substrate Recognition and Catalytic Mechanism in Cu,Zn Superoxide Dismutase

  • Chapter
Oxygen Radicals in Biology and Medicine

Part of the book series: Basic Life Sciences ((BLSC,volume 49))

Abstract

Superoxide dismutase (SOD) is a ubiquitous enzyme of aerobic organisms that protects against the toxic effects of dioxygen metabolism. SOD catalyzes the dismutation of the superoxide radical, O- 2, to molecular oxygen and hydrogen peroxide through the alternate reduction and oxidation of the active site metal ion (Cu, Mn, or Fe)1:

Cu, Zn SOD occurs almost entirely in eukaryotic cells, while Mn or Fe SODs occur predominantly in prokaryotes and mitochondria. The catalytic rate of SOD is very rapid (2 × 109 M-1sec-1),2 suggesting the evolution of an optimal active site for the recognition and chemical catalysis of the substrate by the enzyme. This remarkably high catalytic rate makes the enzyme a simple model system in which to study the role of electrostatic forces in molecular recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Fridovich, Superoxide and superoxide dismutase, in: “Advances in Inorganic Biochemistry,” G. L. Eichhorn and L. G. Marzilli, eds., Elsevier/North Holland, New York (1979).

    Google Scholar 

  2. D. Klug, J. Rabani, and I. Fridovich, A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis, J. Biol. Chem. 247:4839 (1972).

    PubMed  CAS  Google Scholar 

  3. J. A. Tainer, E. D. Getzoff, J. S. Richardson, and D. C. Richardson, Structure and mechanism of copper, zinc superoxide dismutase, Nature 306:284 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. J. A. Tainer, E. D. Getzoff, K. M. Beem, J. S. Richardson, and D. C. Richardson, Determination and analysis of the 2À structure of copper, zinc superoxide dismutase, J. Mol. Biol. 160:181 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. J. S. Richardson, K. A. Thomas, B. H. Rubin, and D. C. Richardson, Crystal structure of bovine Cu, Zn superoxide dismutase at 3À resolution: Chain tracing and metal ligands, Proc. Natl. Acad. Sci. U.S.A. 72:1349 (1975).

    Article  PubMed  CAS  Google Scholar 

  6. D. P. Malinowski and I. Fridovich, Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase, Biochemistry 18:5909 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. D. Barra, F. Martini, J. V. Bannister, M. E. Schininà, G. Rotilio, W. H. Bannister, and F. Bossa, The complete amino acid sequence of human Cu/Zn superoxide dismutase, FEBS Lett. 120:53 (1980).

    Article  PubMed  CAS  Google Scholar 

  8. H. M. Steinman, V. R. Naik, J. L. Abernethy, and R. L. Hill, Bovine erythrocyte superoxide dismutase. Complete amino acid sequence, J.Biol. Chem. 249:7326 (1974).

    CAS  Google Scholar 

  9. H. M. Steinman, The amino acid sequence of copper-zinc superoxide dismutase from bakers’ yeast, J. Biol. Chem. 255:6758 (1980).

    PubMed  CAS  Google Scholar 

  10. J. R. Jabusch, D. L. Farb, D. A. Kerschensteiner, and H. F. Deutsch, Some sulfhydryl properties and primary structure of human erythrocyte superoxide dismutase, Biochemistry 19:2310 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. K. Lerch and D. Ammer, Amino acid sequence of copper-zinc superoxide dismutase from horse liver, J. Biol. Chem. 256:11545 (1981).

    PubMed  CAS  Google Scholar 

  12. H. M. Steinman, Copper-zinc superoxide dismutase from Caulobacter crescentus CB15. A novel bacteriocuprein form of the enzyme, J. Biol. Chem. 257:10283 (1982).

    PubMed  CAS  Google Scholar 

  13. G. J. Steffens, A. M. Michelson, K. Puget, and L. Flohé, The amino-acid sequence of rat Cu-Zn superoxide dismutase, Biol. Chem. Hoppe-Seyler 367:1017 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. G. J. Steffens, A. M. Michelson, F. Ötting, K. Puget, W. Strassburger, and L. Flohé, Primary structure of Cu-Zn superoxide dismutase of Brassica oleracea proves homology with corresponding enzymes of animals, fungi and prokaryotes, Biol. Chem. Hoppe-Seyler 367:1007 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. G.-J. Steffens, J. V. Bannister, W. H. Bannister, L. Flohé, W. A. Günzler, S.-M. A. Kim, and F. Ötting, The primary structure of Cu-Zn superoxide dismutase from Photobacterium leiognathi: Evidence for a separate evolution of Cu-Zn superoxide dismutase in bacteria, Hoppe-Seyler’s Z. Physiol. Chem. 364:676 (1983).

    Article  Google Scholar 

  16. K. Hering, S.-M. A. Kim, A. M. Michelson, F. Ötting, K. Puget, G. J. Steffens, and L. Flohé, The primary structure of porcine Cu-Zn superoxide dismutase. Evidence for allotypes of superoxide dismutase in pigs, Biol. Chem. Hoppe-Seyler 366:435 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. M. E. Schininà, D. Barra, M. Simmaco, F. Bossa, and G. Rotilio, Primary structure of porcine Cu,Zn superoxide dismutase, FEBS Lett. 186:267 (1985).

    Article  PubMed  Google Scholar 

  18. Y. M. Lee, D. J. Friedman, and F. J. Ayala, Superoxide dismutase: An evolutionary puzzle, Proc. Natl. Acad. Sci. U.S.A. 82:824 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. M. E. Schininà, D. Barra, S. Gentilomo, F. Bossa, C. Capo, G. Rotilio, and L. Calabrese, Primary structure of a cationic Cu,Zn superoxide dismutase. The sheep enzyme, FEBS Lett. 207:7 (1986).

    Article  PubMed  Google Scholar 

  20. K. Lerch and E. Schenk, Primary structure of copper-zinc superoxide dismutase from Neurospora crassa, J. Biol. Chem. 260:9559 (1985).

    PubMed  CAS  Google Scholar 

  21. Y. Kitagawa, S. Tsunasawa, N. Tanaka, Y. Katsube, F. Sakiyama, and K. Asada, Amino acid sequence of copper, zinc-superoxide dismutase from spinach leaves, J. Biochem. 99:1289 (1986).

    PubMed  CAS  Google Scholar 

  22. R. E. Cannon, J. A. White, and J. G. Scandalios, Cloning of cDNA for maize superoxide dismutase 2 (S0D2), Proc. Natl. Acad. Sci. U.S.A. 84:179 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. H. A. Rocha, W. H. Bannister, and J. V. Bannister, The amino-acid sequence of copper/zinc superoxide dismutase from swordfish liver. Comparison of copper/zinc superoxide dismutase sequences, Eur. J. Biochem. 145:477 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. M. E. McAdam, E. M. Fielden, F. Lavelle, L. Calabrese, D. Cocco, and G. Rotilio, The involvement of the bridging imidazolate in the catalytic mechanism of action of bovine superoxide dismutase, Biochem. J. 167:271 (1977).

    PubMed  CAS  Google Scholar 

  25. I. Bertini, C. Luchinat, and R. Monnanni, Evidence of the breaking of the copper—imidazole bridge in copper/cobalt-substituted superoxide dismutase upon reduction of the copper(II) centers, J. Am. Chem. Soc. 107:2178 (1985).

    Article  CAS  Google Scholar 

  26. W. H. Koppenol, The physiological role of the charge distribution on superoxide dismutase, in: “Oxygen and Oxy-Radicals in Chemistry and Biology,” E. L. Powers and M. A. J. Rodgers, eds., Academic, New York (1981).

    Google Scholar 

  27. E. D. Getzoff, J. A. Tainer, P. K. Weiner, P. A. Kollman, J. S. Richardson, and D. C. Richardson, Electrostatic recognition between superoxide and copper, zinc superoxide dismutase, Nature 306:287 (1983).

    Article  PubMed  CAS  Google Scholar 

  28. M. L. Salin and W. W. Wilson, Porcine superoxide dismutase, Mol. Cell. Biochem. 36:157 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. A. Cudd and I. Fridovich, Electrostatic interactions in the reaction mechanism of bovine erythrocyte superoxide dismutase, J. Biol. Chem. 257:11443 (1982).

    PubMed  CAS  Google Scholar 

  30. W. H. Koppenol, On the reactivity of the superoxide anion and the biological function of superoxide dismutase, in: “Oxidases and Related Redox Systems,” T. E. King, M. S. Mason, and M. Morrison, eds., Pergamon, Oxford (1982).

    Google Scholar 

  31. C. L. Borders, Jr. and J. T. Johansen, Identification of Arg-143 as the essential arginyl residue in yeast Cu,Zn superoxide dismutase by use of a chromophoric arginine reagent, Biochem. Biophys. Res. Commun. 96:1071 (1980).

    Article  PubMed  CAS  Google Scholar 

  32. W. F. Beyer, Jr., I. Fridovich, G. T. Mullenbach, and R. Hallewell, Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis, J. Biol. Chem. 262:11182 (1987).

    PubMed  CAS  Google Scholar 

  33. R. A. Hallewell, F. R. Masiarz, R. C. Najarian, J. P. Puma, M. R. Quiroga, A. Randolph, R. Sanchez-Pescador, C. J. Scandella, B. Smith, K. S. Steimer, and G. T. Mullenbach, Human Cu/Zn superoxide dismutase cDNA: Isolation of clones synthesising high levels of active or inactive enzyme from an expression library, Nucl. Acids Res. 13:2017 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. R. A. Hallewell, R. Mills, P. Tekamp-Olson, R. Blacher, S. Rosenberg, F. Otting, F. R. Masiarz, and C. J. Scandella, Amino terminal acetylation of authentic human Cu,Zn superoxide dismutase produced in yeast, Biotechnology 5:363 (1987).

    Article  CAS  Google Scholar 

  35. H. E. Parge, E. D. Getzoff, C. S. Scandella, R. A. Hallewell, and J. A. Tainer, Crystallographic characterization of recombinant human CuZn superoxide dismutase, J. Biol. Chem. 261:16215 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Tainer, J.A., Hallewell, R.A., Roberts, V.A., Parge, H.E., Getzoff, E.D. (1988). Probing Enzyme-Substrate Recognition and Catalytic Mechanism in Cu,Zn Superoxide Dismutase. In: Simic, M.G., Taylor, K.A., Ward, J.F., von Sonntag, C. (eds) Oxygen Radicals in Biology and Medicine. Basic Life Sciences, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5568-7_100

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5568-7_100

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5570-0

  • Online ISBN: 978-1-4684-5568-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics