Skip to main content

Positive and Negative Regulation of the Suppressor-Mutator Element

  • Chapter
Plant Transposable Elements

Part of the book series: Basic Life Sciences ((BLSC,volume 47))

Abstract

The Suppressor-mutator (Spm) element is one of the most extensively studied maize transposable elements. It is the fully functional member of a transposable element family containing many functionally altered and mutant members. McClintock’s genetic studies on the Spm family defined the functional interrelationships both among elements of the family and between the elements and genes with Spm insertion mutations (12–27). Rhoades and Dempsey (35) independently identified mutations caused by the same element family; these were subsequently studied by Peterson (30–34), who named the element Enhancer (En).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, J., J. Kingsbury, V. Raboy, J.W. Schiefelbein, O. Nelson, Jr., and N. Fedoroff (1985) The Ac and Spm controlling element families in maize. Cold Spring Harbor Symp. Quant. Biol. 50:307–311.

    Article  PubMed  CAS  Google Scholar 

  2. Bennetzen, J.L. (1985) The regulation of Mutator function and Multransposition. UCLA Symp. Molec. Cell. Biol. 35:343–354.

    CAS  Google Scholar 

  3. Chandler, V.L., and V. Walbot (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc. Natl. Acad. Sci., USA 83:1767–1771.

    Article  PubMed  CAS  Google Scholar 

  4. Chomet, P.S., S. Wessler, and S.L. Dellaporta (1987) Inactivation of the maize transposable element Activator (Ac) is associated with DNA modification. EMBO J. 6:295–302.

    PubMed  CAS  Google Scholar 

  5. Dellaporta, S.L., and P.S. Chomet (1985) The activation of maize controlling elements. In Genetic Flux in Plants, B. Hohn and E.S. Dennis, eds. Springer-Verlag, New York, pp. 169–216.

    Chapter  Google Scholar 

  6. Fedoroff, N.V. (1986) Activation of Spm and modifier elements. Maize Gen. Coop. Newslet. 60:18–20.

    Google Scholar 

  7. Fedoroff, N., S. Wessler, and M. Shure (1983) Isolation of the transposable maize controlling elements Ac and Ds Cell 35:235–242.

    CAS  Google Scholar 

  8. Fedoroff, N., P. Masson, and J. Banks (1987) Regulation of the maize Suppressor-mutator element. In Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor (in press).

    Google Scholar 

  9. Fedoroff, N., M. Shure, S. Kelly, M. Johns, D. Furtek, J. Schiefelbein, and O. Nelson, Jr. (1984) Isolation of Spm controlling elements from maize. Cold Spring Harbor Symp. Quant. Biol. 49:339–345.

    Article  PubMed  CAS  Google Scholar 

  10. Gierl, A., Zs. Schwarz-Sommer, and H. Saedler (1985) Molecular interactions between the components of the En-I transposable element system of Zea mays. EMBO J. 4:579–583.

    PubMed  CAS  Google Scholar 

  11. Masson, P., R. Surosky, J.A. Kingsbury, and N.V. Fedoroff (1987) Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 177:117–137.

    Google Scholar 

  12. McClintock, B. (1951) Mutable loci in maize. Carnegie Institution of Washington Yearbook 50:174–181.

    Google Scholar 

  13. McClintock, B. (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Institution of Washington Yearbook 53:254–260.

    Google Scholar 

  14. McClintock, B. (1955) Controlled mutation in maize. Carnegie Institution of Washington Yearbook 54:245–255.

    Google Scholar 

  15. McClintock, B. (1956) Mutatuions in maize. Carnegie Institution of Washington Yearbook 55:323–332.

    Google Scholar 

  16. McClintock, B. (1957) Genetic and cytological studies of maize. Carnegie Institution of Washington Yearbook 56:393–401.

    Google Scholar 

  17. McClintock, B. (1958) The Suppressor-mutator system of control of gene action in maize. Carnegie Institution of Washington Yearbook 57:415–429.

    Google Scholar 

  18. McClintock, B. (1959) Genetic and cytological studies of maize. Carnegie Institution of Washington Yearbook 58:452–456.

    Google Scholar 

  19. McClintock, B. (1961) Further studies of the Suppressor-mutator system of control of gene action in maize. Carnegie Institution of Washington Yearbook 60:469–476.

    Google Scholar 

  20. McClintock, B. (1961) Some parallels between gene control systems in maize and bacteria. Am. Nat. 95:265–277.

    Article  Google Scholar 

  21. McClintock, B. (1962) Topographical relations between elements of control systems in maize. Carnegie Institution of Washington Yearbook 61:448–461.

    Google Scholar 

  22. McClintock, B. (1963) Further studies of gene-control systems in maize. Carnegie Institution of Washington Yearbook 62:486–493.

    Google Scholar 

  23. McClintock, B. (1964) Aspects of gene regulation in maize. Carnegie Institution of Washington Yearbook 63:592–602.

    Google Scholar 

  24. McClintock, B. (1965) Components of action of the regulators Spm and Ac. Carnegie Institution of Washington Yearbook 64:527–536.

    Google Scholar 

  25. McClintock, B. (1965) The control of gene action in maize. Brookhaven Symp. Quant. Biol. 18:162–184.

    Google Scholar 

  26. McClintock, B. (1986) The states of a gene locus in maize. Carnegie Institution of Washington Yearbook 66:20–28.

    Google Scholar 

  27. McClintock, B. (1971) The contribution of one component of a control system to versatility of gene expression. Carnegie Institution of Washington Yearbook 70:5–17.

    Google Scholar 

  28. Pereira, A., H. Cuypers, A. Gierl, Zs. Schwarz-Sommer, and H. Saedler (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J. 5:835–841.

    PubMed  CAS  Google Scholar 

  29. Pereira, A., Zs. Schwarz-Sommer, A. Gierl, I. Bertram, P.A. Peterson, and H. Saedler (1985) Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. EMBO J. 4:17–23.

    PubMed  CAS  Google Scholar 

  30. Peterson, P.A. (1953) A mutable pale green locus in maize. Genetics 38:682.

    Google Scholar 

  31. Peterson, P.A. (1960) The pale green mutable system in maize. Genetics 45:115–133.

    PubMed  CAS  Google Scholar 

  32. Peterson, P.A. (1961) Mutable al of the En system in maize. Genetics 46:759–771.

    PubMed  CAS  Google Scholar 

  33. Peterson, P.A. (1965) A relationship between the Spm and En control systems in maize. Am. Nat. 99:391–398.

    Article  Google Scholar 

  34. Peterson, P.A. (1966) Phase variation of regulatory elements in maize. Genetics 54:249–266.

    PubMed  CAS  Google Scholar 

  35. Rhoades, M.M., and E. Dempsey (1950) New mutable loci. Maize Gen. Coop. Newslet. 24:50.

    Google Scholar 

  36. Roberts, D., B.C. Hoopes, W.R. McClure, and N. Kleckner (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43:117–130.

    Article  PubMed  CAS  Google Scholar 

  37. Schwartz, D., and E. Dennis (1986) Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation. Molec. Gen. Genet. 205:476–482.

    Article  CAS  Google Scholar 

  38. Schwarz-Sommer, Zs., A. Gierl, R. Berndtgen, and H. Saedler (1985) Sequence comparison of “states” of al-ml suggests a model of Spm (En) action. EMBO J. 4:2439–2443.

    PubMed  CAS  Google Scholar 

  39. Schwarz-Sommer, Zs., A. Gierl, R.B. Klösgen, U. Wienand, P.A. Peterson, and H. Saedler (1984) The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wx-m8 allele of Zea mays. EMBO J. 3:1021–1028.

    PubMed  CAS  Google Scholar 

  40. Schwarz-Sommer, Zs., N. Shepherd, E. Tacke, A. Gierl, W. Rohde, L. Leclercq, M. Mattes, R. Berndtgen, P.A. Peterson, and H. Saedler (1987) Influence of transposable elements on the structure and function of the Al gene of Zea mays. EMBO J. 6:287–294.

    PubMed  CAS  Google Scholar 

  41. Tacke, E., Zs. Schwarz-Sommer, P.A. Peterson, and H. Saedler (1986) Molecular analysis of states of the A locus of Zea mays. Maydica 31:83–91.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Fedoroff, N., Masson, P., Banks, J., Kingsbury, J. (1988). Positive and Negative Regulation of the Suppressor-Mutator Element. In: Nelson, O., Wilson, C.M., Saslaw, C.G. (eds) Plant Transposable Elements. Basic Life Sciences, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5550-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5550-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5552-6

  • Online ISBN: 978-1-4684-5550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics