Skip to main content

Dominant Microorganisms of the Upper Ocean: Form and Function, Spatial Distribution and Photoregulation of Biochemical Processes

  • Chapter
Dynamic Processes in the Chemistry of the Upper Ocean

Part of the book series: NATO Conference Series ((SYSC,volume 17))

  • 92 Accesses

Abstract

The microorganisms that account for 90% of the biomass in the upper layer of the open sea are so small they pass through a 10 µm porosity plankton net, but are so numerous that a 3 or 30 ml sample yields a statistically significant count of the bacteria and flagellates, respectively. The bacterial population contains not only the organotrophs responsible for organic matter decomposition and mineralization, but conspicuous and important populations of both phototrophic and chemotrophic autotrophs as well as an undetermined population of lysotrophic bacteria which prey upon other bacteria. These procaryotic cells lacking membrane-bound organelles interact with the eucaryotic (true) cells of the protists (unicellular microorganisms with organelles) that are equally divided between chloroplast-containing phototrophic flagellates and colorless phagotrophic (particle eating) flagellates.

These dominant microorganisms have two major distributions, as plankters free in the water and as epibionts associated with the aggregated seston that makes up marine snow. Their physical state as plankters or as epibionts has a major effect on their spatial distribution and, therefore, their activity and survival in clear oceanic waters during the photoperiod. Near ultra-violet and the shorter visible wavelengths of light which penetrate to depths exceeding 30 m apparently inhibit bacterial processes by photodenaturing bacterial enzymes at intensities far below that which kills the bacteria by denaturing DNA and RNA. Light sensitive bacteria include not only the organotrophs responsible for organic matter decay but the chemotrophs that oxidize the terminal products of decay, ammonia and methane. Therefore, the daily chemical cycles of CO2, O2, H2, CH4, and labile components of organic matter which are due, to a greater or lesser degree, to microbiological processes, are in turn controlled by the solar cycle directly through photoinhibition and phototoxicity and indirectly through vertical mixing caused by wind-drive turbulence and heat-driven convection that brings the less dense microbiota into the higher intensity light near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attwood, M.M., and Harder, W., 1972, A rapid and specific enrichment procedure for Hypomicrobium spp. Antonie von Leeuwenhoek, J. Microbiol. Serol., 38:369.

    Google Scholar 

  • Azam, F., and Hodson, R.E., 1981, Multiphasic kinetics for D-glucose uptake for assemblages of natural marine bacteria, Mar. Ecol. Progr. Ser., 6:213.

    Article  Google Scholar 

  • Baxter, M., and Sieburth, J.McN., 1984, Metabolic and ultrastructural response to glucose of two eurytrophic bacteria isolated from seawater at different enriching concentrations, Appl. Environ. Microbiol., 47:31.

    Google Scholar 

  • Burney, G.M., and Sieburth, J.McN., 1977, Dissolved carbohydrates in seawater. U. A spectrophotometric procedure for total carbohydrate analysis and polysaccharide estimation, Mar. Chem., 5:15.

    Article  Google Scholar 

  • Burney, C.M., Johnson, K.M., Lavoie, D.M., and Sieburth, J.McN., 1979, Dissolved carbohydrate and microbial ATP in the North Atlantic: concentrations and interactions, Deep-Sea Res., 26:1267.

    Article  Google Scholar 

  • Burney, C.M., Davis, P.G., Johnson, K.M., and Sieburth, J.McN., 1981, Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton distributions in the Western Sargasso Sea, Mar. Biol., 65:289.

    Article  Google Scholar 

  • Burney, C.M., Davis, P.G., Johnson, K.M., and Sieburth, J.McN., 1982, Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea, Mar. Biol., 67:311.

    Article  Google Scholar 

  • Calow, P., 1977, Conversion efficiencies in heterotrophic organisms, Biol. Rev., 52:385.

    Article  Google Scholar 

  • Campbell, L., Carpenter, E.J., and Iacono, V.J., 1983, Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence, Appl. Environ. Microbiol., 46:553.

    Google Scholar 

  • Carlucci, A.F., and Shimp, S.L., 1974, Isolation and growth of a marine bacterium in low concentrations of substrate, in: “Effect of the Ocean Environment on Marine Bacteria”, R.R. Colwell and R.Y. Morita, eds, pp. 363–367, Baltimore University Press.

    Google Scholar 

  • Caron, D.A., 1983, Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Environ. Microbiol., 46:491.

    Google Scholar 

  • Caron, D.A., Davis, P.G., Madin, L.P., and Sieburth, J.M.N., 1982, Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates, Science, N.Y., 218:795.

    Article  Google Scholar 

  • Davis, P.G., and Sieburth, J.MCN., 1982, Differentiation of the phototrophic and heterotrophic populations of nanoplankton populations in marine waters by epifluorescence microscopy, Ann. Inst. Oceanogr., Paris, suppl., 58:249.

    Google Scholar 

  • Ferguson, R.L., and Rublee, P., 1976, Contribution of bacteria to standing crop of coastal plankton, Limnol Oceanogr., 21:141.

    Article  Google Scholar 

  • Hanson, R.S., 1980, Ecology and diversity of methylotrophic organisms, Adv. Appl. Microbiol., 26:3.

    Article  Google Scholar 

  • Holm-Hansen, O., and Booth, C.R., 1966, The measurement of adenosine triphosphate in the ocean and its ecological significance, Limnol. Oceanogr., 11:510.

    Article  Google Scholar 

  • Hooper, A.B., and Terry, K.T., 1974, Photoinactivation of ammonia oxidation in Nitrosomonas, J. Bacteriol., 119:899.

    Google Scholar 

  • Horrigan, S.G., Carlucci, A.F., and Williams, P.M., 1981, Light inhibition of nitrification in sea-surface films, J. Mar.Res. 39:557.

    Google Scholar 

  • Jannasch, H.W., 1968, Growth characteristics of heterotrophic bacteria in seawater, J. Bacteriol., 95:722.

    Google Scholar 

  • Jannasch, H.W., and Jones, G.E., 1959, Bacterial populations in sea water as determined by different methods of enumeration, Limnol. Oceanogr., 4:128.

    Article  Google Scholar 

  • Johnson, K.M., and Sieburth, J.McN., 1977, Dissolved carbohydrates in seawater. I. A precise spectrophotometric analysis for monosaccharides, Mar. Chem., 5:1.

    Article  Google Scholar 

  • Johnson, K.M., Burney, C.M., and Sieburth, J.MCN., 1981a, Doubling the production and precision of the MBTH spectrophotometric assay for dissolved carbohydrates in seawater, Mar. Chem., 10:467.

    Article  Google Scholar 

  • Johnson, K.M., Burney, C.M., and Sieburth, J.M.N., 1981b, Enigmatic marine ecosystem metabolism measured by direct diel DCO2 and 02 flux in conjunction with DOC release and uptake, Mar. Biol., 65:49.

    Article  Google Scholar 

  • Johnson, K.M., Davis, P.G., and Sieburth, J.MCN., 1983, Diel variation of TCO2 in the upper layer of oceanic waters reflects microbial composition, variation and possibly methane cycling, Mar. Biol., 74:1.

    Article  Google Scholar 

  • Johnson, P.W., and Sieburth, J.McN., 1979, Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr., 24:928.

    Article  Google Scholar 

  • Johnson, P.W., and Sieburth, J.McN., 1982, In-situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters, J. Phycol., 18:318.

    Article  Google Scholar 

  • Kranck, K., and Milligan, T., 1980, Macroflocs: Production of marine snow in the laboratory, Mar. Ecol. Progr. Ser., 3:19.

    Article  Google Scholar 

  • Li, W.K.W., Subba Rao, D.V., Harrison, W.G., Smith, J.C., Cullen, J.J., Irwin, B., and Platt, T., 1983, Autotrophic picoplankton in the tropical ocean, Science, N.Y., 219:292.

    Article  Google Scholar 

  • MaalOe, O., and Kjeldgaard, N.O., 1966, “Control of Macromolecular Synthesis”, Benjamin, New York.

    Google Scholar 

  • McCave, I.M., 1975, Vertical flux of particles in the ocean, Deep-Sea Res., 22:491.

    Google Scholar 

  • Olson, R.J., 1981a, 15N tracer studies of the primary nitrite maximum, J. Mar. Res., 39:203.

    Google Scholar 

  • Olson, R.J., 1981b, Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum, J. Mar. Res., 39:227.

    Google Scholar 

  • Peterson, B.J., 1980, Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem, Ann. Rev. Ecol. Systematics, 11:359.

    Article  Google Scholar 

  • Platt, T., Subba Rao, D.V., and Irwin, B., 1983, Photosynthesis of picoplankton in the oligotrophic ocean, Nature, Lond., 301:701.

    Article  Google Scholar 

  • Purcell, E.M., 1977, Life at low Reynolds number, Amer. J. Physics., 45:242.

    Article  Google Scholar 

  • Ryther, J.G., 1969, Photosynthesis and fish production in the sea, Science, N.Y., 166:72.

    Article  Google Scholar 

  • Scranton, M.I., and Brewer, P.G., 1977, Occurrence of methane in the near surface waters of the western subtropical North-Atlantic, Deep-Sea Res., 24:127.

    Article  Google Scholar 

  • Sieburth, J.MCN., 1971, Distribution and activity of oceanic bacteria, Deep-Sea Res., 18:1111.

    Google Scholar 

  • Sieburth, J.MCN., 1977, International Helgoland Symposium: Convener’s report on the informal session on biomass and productivity of microorganisms in plankton ecosystems, Helgolander Wiss. Meeresunters., 30:697.

    Article  Google Scholar 

  • Sieburth, J.McN., 1979, “Sea Microbes”, Oxford University Press, New York.

    Google Scholar 

  • Sieburth, J.MCN., 1983, Microbiological and organic-chemical processes in the surface and mixed layers, in: “Air-Sea Exchange of Gases and Particles”, P.S. Liss and W.G.N. Slinn, eds, pp. 121–172, Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Sieburth, J.MCN., Johnson, K.M., Burney, C.M., and Lavoie, D.M., 1977, Estimation of in situ rates of heterotrophy using diurnal changes in dissolved organic matter and growth rates of picoplankton in diffusion culture, Helgolander Wiss. Meeresunters., 30:565.

    Article  Google Scholar 

  • Sieburth, J.McN., Smetacek, V., and Lenz, J., 1978, Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol Oceanogr., 23:1256.

    Article  Google Scholar 

  • Sieburth, J.McN., Johnson, P.W., Eberhardt, M.A., and Sieracki, M.E., 1984, Methane-oxidizing bacteria from the mixing layer of the Sargasso Sea and their photosensitivity, Abstract, Trans. Amer. Geophys. Un., 64:1054.

    Google Scholar 

  • Slobodkin, L.B., 1962, “Growth and Regulation of Animal Populations”, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Smith, R.C., and Baker, D.S., 1979, Penetration of UV-B and biologically effective dose-rates in natural waters, Photochem. Photobiol., 29:311.

    Article  Google Scholar 

  • Stetter, K.O., and Gaag, G., 1983, Reduction of molecular sulphur by methanogenic bacteria, Nature, Lond., 305:309.

    Article  Google Scholar 

  • Stolp, H., 1981, The genus Bdellovibrio, in: “The Prokaryotes”, M.P. Starr, H. Stolp, H.G. Trüper, A. Balows and H.G. Schlegel, eds, pp. 618–629, Springer-Verlag, New York.

    Google Scholar 

  • Vaccaro, R.F., Hicks, S., Jannasch, H.W., and Carey, F.G., 1968, The occurrence and role of glucose in seawater, Limnol. Oceanogr., 13:356.

    Article  Google Scholar 

  • Venrick, E.L., Beers, J.R., and Heinbokel, J.F., 1977, Possible consequences of containing microplankton for physiological rate measurements, J. Exp. Mar. Biol. Ecol., 36:55.

    Article  Google Scholar 

  • Vogel, S., 1981, “Life in Moving Fluids”, Willard Grant Press, Boston.

    Google Scholar 

  • Ward, B.B., and Perry, M.J., 1980, Immunofluorescent assay for the marine ammonium-oxidizing bacterium Nitrosococcus oceanus, Appl. Environ. Microbiol., 39:913.

    Google Scholar 

  • Ward, B.B., Olson, R.J., and Perry, M.J., 1982, Microbial nitrification rates in the primary nitrite maximum off southern California, Deep-Sea Res., 29:247.

    Article  Google Scholar 

  • Waterbury, J.B., Watson, S.W., Guillard, R.R.L., and Brand, L.E., 1979, Widespread occurrence of a unicellular, marine, planktonic cyanobacterium, Nature, Lond., 277:293.

    Article  Google Scholar 

  • Watson, S.W., Valois, F.W., and Waterbury, J.B., 1981, The family Nitrobacteraceae, in: “The Prokaryotes”, M.P. Starr, H. Stolp, H. G. Trüper, A. Balows and H.G. Schlegel, eds, pp. 1003–1022, Springer-Verlag, New York.

    Google Scholar 

  • Whittenbury, R., and Dalton, H., 1981, The methylotrophic bacteria, in: “The Prokaryotes”, M.P. Starr, H. Stolp, B.G. Trüper, A. Balows and H.G. Schlegel, eds, pp. 894–902, Springer-Verlag, New York.

    Google Scholar 

  • Wright, R.T., 1973, Some difficulties in using 14C-organic solutes to measure heterotrophic bacterial activity, in: “Estuarine Microbial Ecology”, H. Stevenson and R.R. Colwell, eds, pp. 199–217, University of South Carolina Press, Columbia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Sieburth, J.M. (1986). Dominant Microorganisms of the Upper Ocean: Form and Function, Spatial Distribution and Photoregulation of Biochemical Processes. In: Burton, J.D., Brewer, P.G., Chesselet, R. (eds) Dynamic Processes in the Chemistry of the Upper Ocean. NATO Conference Series, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5215-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5215-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5217-4

  • Online ISBN: 978-1-4684-5215-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics