Skip to main content

Structure-Function Correlation in Noise-Damaged Ears: A Light and Electron-Microscopic Study

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 111))

Abstract

Of the roughly 50,000 afferent fibers in the cat’s auditory nerve, approximately 95% terminate peripherally on inner hair cells (IHCs), as the so-called “radial fibers” (RFs) [24,25]. RFs comprise the population of neurons sampled when the auditory nerve is impaled with glass microelectrodes [9]. In the cat, the great majority of RFs is unbranched, terminating on a single IHC via a single terminal swelling [24,8]. Thus, by sampling the activity of a single RF we have a window onto the functional state of a very restricted region of the organ of Corti. By sampling the activity of different single fibers, with different characteristic frequencies (CFs), we can assess the functional state of the entire cochlea, from base to apex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Ades, C. Trahiotis, A. Kokko-Cunningham and B. Averbuch, Comparison of hearing thresholds and morphological changes in the chinchilla after exposure to 4 kHz tones, Acta Otolaryngol. 78:192 (1974).

    Article  CAS  Google Scholar 

  2. A. R. Cody and D. Robertson, Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures, Hearing Res. 9:55 (1983).

    Article  CAS  Google Scholar 

  3. B. Engstrom, A. Flock and E. Borg, Ultrastructural studies of stereocilia in noise-exposed rabbits, Hearing Res. 12:251 (1983).

    Article  CAS  Google Scholar 

  4. E. F. Evans, Peripheral auditory processing in normal and abnormal ears: physiological considerations for attempts to compensate for auditory deficits by acoustic and electric prostheses, Scand. Audiol. Suppl. 6:1 (1978).

    Google Scholar 

  5. N. Y. S. Kiang, E. C. Moxon and R. A. Levine, Auditory nerve activity in cats exposed to ototoxic drugs, in: “Sensorineural Hearing Loss,” Ciba Symposium, G.E.W. Wolstenholme and J. Knight eds., J. and A. Churchill, London (1970).

    Google Scholar 

  6. N. Y. S. Kiang, T. Watanabe, E. C. Thomas, and L. F. Clark, “Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve,” MIT Press, Cambridge (1965).

    Google Scholar 

  7. M. C. Liberman, Auditory nerve response from cats raised in a low-noise chamber, J. Acoust. Soc. Amer. 63:442 (1978).

    Article  CAS  Google Scholar 

  8. M. C. Liberman, Morphological differences among radial afferent fibers in the cat cochlea: an electron microscopic study of serial sections, Hearing Res. 3:45 (1980).

    Article  CAS  Google Scholar 

  9. M. C. Liberman, Single-neuron labeling in the cat auditory nerve, Science 216:1239 (1982).

    Article  CAS  Google Scholar 

  10. M. C. Liberman, The cochlear frequency map for the cat: labeling auditory nerve fibers of known characteristic frequency, J. Acoust. Soc. Amer. 72:1441 (1982).

    Article  CAS  Google Scholar 

  11. M. C. Liberman, Single neuron labeling and chronic cochlear pathology, I: Threshold shift and characteristic frequency shift, Hearing Res. 16:33 (1984).

    Article  CAS  Google Scholar 

  12. M. C. Liberman and D. G. Beil, Hair cell condition and auditory nerve response in normal and noise-damaged cochleas, Acta Otolaryngol. 88:161 (1979).

    Article  CAS  Google Scholar 

  13. M. C. Liberman and L. W. Dodds, Single neuron labeling and chronic cochlear pathology, II: Stereocilia damage and alterations of spontaneous discharge rates, Hearing Res. 16:43 (1984).

    Article  CAS  Google Scholar 

  14. M. C. Liberman and L. W. Dodds, Single-neuron labeling and chronic cochlear pathology, III: Stereocilia damage and alterations in threshold tuning curves, Hearing Res. 16:55 (1984).

    Article  CAS  Google Scholar 

  15. M. C. Liberman and N. Y. S. Kiang, Acoustic trauma in cats: cochlear pathology and auditory nerve activity, Acta Otolaryngol. Suppl. #358:1 (1978).

    CAS  Google Scholar 

  16. M. C. Liberman and N. Y. S. Kiang, Single-neuron labeling and chronic cochlear pathology, IV: Stereocilia damage and alterations in rate and phase-level functions, Hearing Res. 16:75 (1984).

    Article  CAS  Google Scholar 

  17. M. C. Liberman and M. J. Mulroy, Acute and chronic effects of acoustic trauma: cochlear pathology and auditory nerve pathophysiology, in: “New Perspectives on Noise-Induced Hearing Loss,” R. P. Hamernik, D. Henderson and R. Salvi, eds., Raven Press, New York.

    Google Scholar 

  18. D. Lim and W. Melnick, Acoustic damage of the cochlea, Arch. Otolaryngol. 94:294 (1971).

    Article  CAS  Google Scholar 

  19. J. D. Miller, C. S. Watson and W. P. Covell, Deafening effects of noise on the cat, Acta Otolaryngol. Suppl. 176:1 (1963).

    Google Scholar 

  20. D. Robertson, Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea, Hearing Res. 7:55 (1982).

    Article  CAS  Google Scholar 

  21. W. F. Sewell, The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats, Hearing Res. 14:305 (1984).

    Article  CAS  Google Scholar 

  22. N. Slepecky and S. C. Chamberlain, Distribution and polarity of actin in the sensory hair cells of the chinchilla cochlea, Cell Tissue Res. 224:15 (1982).

    Article  CAS  Google Scholar 

  23. N. Slepecky, R. Hamernik, D. Henderson and D. Coling, Correlation of audioraetric data with changes in cochlear hair cell stereocilia resulting from impulse noise trauma, Acta Otolaryngol. 93:329 (1982).

    Article  CAS  Google Scholar 

  24. H. H. Spoendlin, Innervation of the organ of Corti of the cat, Acta Otolaryngol. 67:239 (1969).

    Article  CAS  Google Scholar 

  25. H. H. Spoendlin, Primary structural changes in the organ of Corti after acoustic overstimulation, Acta Otolaryngol. 71:166 (1971).

    Article  CAS  Google Scholar 

  26. L. G. Tilney, D. J. DeRosier and M. J. Mulroy, The organization of actin filaments in the stereocilia of cochlear hair cells, J. Cell Biol. 86:244 (1980).

    Article  CAS  Google Scholar 

  27. L. G. Tilney, J. C. Saunders, E. Egelman and D. J. DeRosier, Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae, Hearing Res. 7:181 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Charles Liberman, M., Dodds, L.W., Learson, D.A. (1986). Structure-Function Correlation in Noise-Damaged Ears: A Light and Electron-Microscopic Study. In: Salvi, R.J., Henderson, D., Hamernik, R.P., Colletti, V. (eds) Basic and Applied Aspects of Noise-Induced Hearing Loss. NATO ASI Series, vol 111. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5176-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5176-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5178-8

  • Online ISBN: 978-1-4684-5176-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics