Skip to main content

Brain Peptides, Neuroleptic-Induced Tolerance, and Dopamine Receptor Supersensitivity

Implications in Tardive Dyskinesia

  • Chapter
Movement Disorders
  • 65 Accesses

Abstract

The number of prescriptions written in an average community in the United States includes 20% for medication intended to affect mental processes (Baldessarini, 1980). Among these medications are several classes of drugs that are effective in the symptomatic treatment of psychoses. The phenothiazines as a class, and especially fluphenazine, the prototype, are the most widely used in the treatment of psychotic patients. Another drug used to treat psychosis is haloperidol, which is a butyrophenone derivative. Although structurally different from phenothiazines, haloperidol shares many of their pharmacological properties. These agents have been shown to be effective in the treatment of the manic phase of manic-depressive illnesss and in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R. M., Lane, J. D., and Brauchi, J. T., 1980, Amantadine reduces haloperidol-induced dopamine receptor hypersensitivity in the striatum, Eur. J. Pharmacol. 65: 313–315.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N. E., 1972, Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and antiacetylcholine drugs, J. Pharm. Pharmacol. 24: 905–906.

    Article  PubMed  CAS  Google Scholar 

  • Angst, J., Bente, D., Berner, P., Heimann, H., Helmchen, H., and Hippius, H., 1971, Das Klinische Wirkungs bild von clozapine (Unterschung mit dem AMP-system), Pharmacopsychiatria. 4: 201–211.

    Article  Google Scholar 

  • Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W., and Stille, G., 1973, Tolerance phenomena with neuroleptics: Catalepsy, apomorphine stereotypies and strital dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol, Eur. J. Pharmacol. 22: 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Baldessarini, R. J., 1980, Drugs and the treatment of psychiatric disorders, in: The Pharmacological Basis of Therapeutics A. G. Gilman, L. S. Goodman, and A. Gilman, eds., pp. 391–447, Macmillan, New York.

    Google Scholar 

  • Barbeau, A., Roy, M., and Kastin, A. J., 1976, Double-blind evaluation of oral L-prolyl-L-leucylglycinamide in Parkinson’s disease, Can. Med. Assoc. J. 24: 120–122.

    Google Scholar 

  • Bhargava, H. N., 1981, The effects of hypothalamic peptide factor MIF, and its cyclic analog on tolerance to haloperidol in the rat, Life Sci. 29: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Bhargava, H. N., 1982, Effects of melanotropin release inhibiting factor, and related compounds, on 3H-spiroperidol and 3H-apomorphine binding to rat striatal and hypothalamic dopamine receptors, Pharmacologist 24: 121.

    Google Scholar 

  • Bhargava, H. N., 1983a, The effect of melanotropin release inhibiting factor, its metabolites and analogs on 3H-spiroperidol and 3H-apomorphine binding sites, Gen. Pharmacol. 14: 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Bhargava, H. N., 1983b, Cyclo(Leu-Gly): A possible treatment for tardive dyskinesia? in: Modern Problems of Pharmacopsychiatry, “New Directions in Tardive Dyskinesia Research, Vol. 21 ( J. Bannet and R. H. Belmaker, eds.), pp. 196–205, Karger, Basel.

    Google Scholar 

  • Bhargava, H. N., 1984a, Effects of prolyl-leucyl-glycinamide and cyclo(leucyl-glycine) on the supersensitivity of brain dopamine receptors induced by chronic administration of haloperidol to rats, Neuropharmacology 23: 439–444.

    Article  PubMed  CAS  Google Scholar 

  • Bhargava, H. N., 1984b, Enhanced 3H-spiroperidol binding induced by chronic haloperidol treatment inhibited by peptides administered during the withdrawal phase, Life Sci. 34: 887–879.

    Article  Google Scholar 

  • Bhargava, H. N., and Ritzmann, R. F., 1980, Inhibition of neuroleptic-induced dopamine receptor supersensitivity by cyclo(Leu-Gly), Pharmacol. Biochem. Behay. 13: 633–636.

    Article  CAS  Google Scholar 

  • Branchey, M. H., Branchey, L. B., Bark, N. M., and Richardson, M. A., 1979, Lecithin in the treatment of tardive dyskinesia, Commun. Psychopharmacol. 3: 303–307.

    PubMed  CAS  Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 1973, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther. 185: 560–571.

    PubMed  CAS  Google Scholar 

  • Burnett, G. B., Prange, A. J., Wilson, I. C., Joliff, L. A., Creese, I., and Snyder, S. H., 1980, Adverse effect of anticholinergic-antiparkinsonian drugs in tardive dyskinesia: An investigation of mechanism, Neuropsychobiology 6: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D. R., Creese, I., and Snyder, S. H., 1977, Antischizophrenic drugs: Chronic treatment elevates dopamine receptor binding in brain, Science 197: 326–328.

    Article  Google Scholar 

  • Carlsson, A., and Lindquist, M., 1963, Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. 20: 140–144.

    CAS  Google Scholar 

  • Casey, D. E., Gerlach, J., and Sinunelsgaard, H., 1979, Sulpiride in tardive dyskinesia, Psycho-pharmacology 66: 73–77.

    CAS  Google Scholar 

  • Christian, A. V., and Moller-Nielsen, I., 1979, Dopaminergic supersensitivity: Influence of dopamine agonists, cholinergics„ anticholinergics, and drugs used for the treatment of tardive dyskinesia, Psychopharmacology 62: 111–116.

    Article  Google Scholar 

  • Christiansen, E., Moller, J. E., and Fourbye, A., 1970, Neuropathological investigation of 28 brains from patients with dyskinesia, Acta Psychiatr. Scand. 46: 14–23.

    Google Scholar 

  • Clement-Cormier, Y. C., Kebabian, J. W., Petzoid, G. L., and Greengard, P., 1974, Dopamine sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. USA 71: 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Crane, G. E., 1968, Tardive dyskinesia in patients treated with major neuroleptics: A review of the literature, Am. J. Psychiatry 124: 40–48.

    Google Scholar 

  • Creese, I., Usdin, T. B., and Snyder, S. H., 1979, Dopamine receptor binding regulated by guanine nucleotides, Mol. Pharmacol. 16: 69–76.

    CAS  Google Scholar 

  • Das, S., and Bhargava, H. N., 1986, Effects of Pro-Leu-Gly-NH2 and cyclo(Leu-Gly) on the binding of 3H-quinuclidinyl benzilate to striatal cholinergic muscarinic receptors, Peptides (in press).

    Google Scholar 

  • Ebstein, R. P. Pickholz, D., and Belmaker, R. H., 1979, Dopamine receptor changes after longterm haloperidol treatment in rats, J. Pharm. Pharmacol. 31: 558–559.

    CAS  Google Scholar 

  • Ehrensing, R. H., Kastin, A. J. Larsons, P. F., and Bishop, G. A., 1977, Melanocyte stimulatinghormone release inhibiting factor-1 and tardive dyskinesia, Dis. Nerv. Syst. 38: 303–307.

    CAS  Google Scholar 

  • Ezrin-Waters, C., and Seeman, P., 1977, Tolerance to haloperidol catalepsy, Eur J. Pharmacol. 41: 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Fann, W. E., Lake, C. R., Gerber, C. J., and McKenzie, G. M., 1974, Cholinergic suppression of tardive dyskinesia, Psychopharmacologia 37: 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Fann, W. E. Sullivan, J. L. III, Miller, R. D., and McKenzie, G. M., 1975, Deanol in tardive dyskinesia: a preliminary report, Psychopharmacologia 42: 135–137.

    Article  PubMed  CAS  Google Scholar 

  • Fourbye, A., Rasche, P. J., and Peterson, B., 1964, Neurological symptoms in pharmacotherapy of psychoses, Acta Psychiatr. Scand. 40: 10–27.

    Google Scholar 

  • Fjalland, B., and Moller-Nielsen, I., 1974, Enhancement of methylphenidate-induced stereotypies by repeated administration of neuroleptics, Psychopharmacologia (Berlin) 34: 105–109.

    Article  CAS  Google Scholar 

  • Gardos, G., Cole, J. O., and LaBrie, R. L., 1977, The assessment of tardive dyskinesia, Arch. Gen. Psychiatry 34: 1206–1212.

    Article  CAS  Google Scholar 

  • Gardos, G., Granacher, R. P., Cole, J. O., and Sniffin, C., 1979, The effects of papaverine in tardive dyskinesia, Prog. Neuropsychopharmacol. 3: 543–550.

    Article  CAS  Google Scholar 

  • Garelis, E., and Neff, N. H., 1974, Cyclic adenosine monophosphate: Selective increase in caudate nucleus after administration of L-dopa, Science 183: 532–533.

    Article  PubMed  CAS  Google Scholar 

  • Gerlach, J., 1977, The relationship between parkinsonism and tardive dyskinesia, Am. J. Psychiatry 134: 781–784.

    PubMed  CAS  Google Scholar 

  • Gerlach, J., Reisby, N., and Randrup, A., 1974, Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia, Psychopharmacologia 34: 21–35.

    Article  PubMed  CAS  Google Scholar 

  • Gessa, G. L., and Tagliamonte, A., 1975, Effect of methadone and dextromoramide on dopamine metabolism: Comparison with haloperidol and amphetamine, Neuropharmacology 14: 913–920.

    Article  PubMed  CAS  Google Scholar 

  • Gianutsos, G., Drawbaugh, R. B., Hynes, M. D., and Lal, H., 1974, Behavioral evidence for dopaminergic supersensitivity after chronic haloperidol, Life Sci. 14: 887–898.

    Article  PubMed  CAS  Google Scholar 

  • Gnegy, M. E., Uzunov, P., and Costa, E., 1976, Regulations of the dopamine stimulation of striatal adenylate cyclase by an endogenous Ca -binding protein, Proc. Natl. Acad. Sci. USA 73: 3887–3890.

    Article  PubMed  CAS  Google Scholar 

  • Gnegy, M. E. Uzunov, P., and Costa, E., 1977a, Participation of an endogenous Ca+ k-binding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors, J. Pharmacol. Exp. Ther. 202: 558–564.

    PubMed  CAS  Google Scholar 

  • Gnegy, M. E., Lucchelli, A., and Costa, E., 1977b, Correlation between drug-induced supersensitivity of dopamine dependent striatal mechanisms and the increase in striatal content of the Ca“ -regulated protein activator of cAMP phosphodiesterase, Naunyn-Schmiedb. Arch. Pharmacol. 301: 121–127.

    Article  CAS  Google Scholar 

  • Greenberg, R., Whalley, C. E., Jourdikian, F, Mendelson, I. S., and Walter, R., 1976, Peptides readily penetrate the blood brain barrier: Uptake of peptides by synaptosomes is passive, Pharmacol. Biochem. Behay. 5: 151–158.

    Article  CAS  Google Scholar 

  • Growdon, J. H. Hirsch, M. J. Wurtman, R. J., and Weiner, W., 1977, Oral choline administration to patients with tardive dyskinesia, N. Engl. J. Med. 297: 524–527.

    CAS  Google Scholar 

  • Horn, A. S., and Snyder, S. H., 1971, Chlorpromazine and dopamine: Conformational similarity that correlate with the antischizophrenic activity of phenothiazine drugs, Proc. Natl. Acad. Sci. USA 68: 2325–2328.

    Article  PubMed  CAS  Google Scholar 

  • Huidobro-Toro, J. P. deCarolis, A. S., and Longo, V. G., 1974, Action of two hypothalamic factors (TRH,MIF) and of angiotensin II on the behavioral effects of L-dopa and 5-hydroxytryptophan in mice, Pharmacol. Biochem. Behay. 2: 105–109.

    CAS  Google Scholar 

  • Hunter, R., Earl., C. J., and Janz, D., 1964, A syndrome of abnormal movements and dementia in leucotomized patients treated withh phenothiazines, J. Neurol. Neurosurg. Psychiatry 27: 219–223.

    CAS  Google Scholar 

  • Ionescu, R., Nica, S. U., Oproiu, L., Niturad, A., and Tudoarche, B., 1973, Double blind study in psychopathic behavioral disorders (clozapine and pericyazine), Pharmacopsychiatria 6: 294–299.

    Article  CAS  Google Scholar 

  • Iversen, L., 1975, Dopamine receptors in the brain: A dopamine sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action, Science 188: 1084–1089.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, P.A. J., and Allewijn, T. F. M., 1969, The distribution of the butyrophenones, haloperidol, trifluperidol, moperone, and clofluperiol in rats, and its relationships with their neuroleptic activity, Arzneim. Forsch. 19: 199–208.

    CAS  Google Scholar 

  • Kane, J. Wegner, J., Stenzler, S., and Ramsey, P., 1980, The prevalence of the presumed tardive dyskinesia in psychiatric inpatients and outpatients, Psychopharmacology 69: 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Karobath, M., and Leitich, H., 1974, Antipsychotic drugs and dopamine stimulated adenylate cyclase prepared from corpus striatum of rat brain, Proc. Natl. Acad. Sci. USA 71: 2915–2918.

    Article  PubMed  CAS  Google Scholar 

  • Kastin, A. J., and Barbeau, A., 1972, Prelininary clinical studies with L-prolyl-L-leucyl-glycineamide in Parkinson’s disease, Can. Med. Assoc. J. 107: 1079–1081.

    PubMed  CAS  Google Scholar 

  • Kazamatsuri, H., Chien, C. P., and Cole, J. O., 1972a, Therapeutic approaches to tardive dyskinesia: a review of the literature, Arch. Gen. Psychiatry 27: 491–499.

    Article  PubMed  CAS  Google Scholar 

  • Kazamatsuri, H., Chien, C., and Cole, J. O., 1972b, Treatment of tardive dyskinesia I. Clinical efficacy of a dopamine-depleting agent tetrabenazine, Arch. Gen. Psychiatry 27: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Kazamatsuri, H., Chien, C., and Cole, J. O., 1972c, Treatment of tardive dyskinesia III. Short-term efficacy of dopamine-blocking agents, haloperidol and thiopropazate, Arch. Gen. Psychiatry 27: 100–103.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., and Calne, D. W., 1979, Multiple receptors for dopamine, Nature (London) 277: 93–96.

    Article  CAS  Google Scholar 

  • Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine sensitive adenylate cyclase in the caudate nucleus of rat brain and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. USA 69: 2145–2149.

    Article  PubMed  CAS  Google Scholar 

  • Klawans, H. L., Jr., and McKendall, R. R., 1971, Observations on the effect of levodopa on tardive lingual-facial-buccal dyskinesia, J. Neurol. Sci. 14: 189–192.

    Article  PubMed  Google Scholar 

  • Klawans, H. L., and Rubovits, R., 1974a, Effect of cholinergic and anticholinergic agents on tardive dyskinesia, J. Neurol. Neurosurg. Psychiatry 37: 941–947.

    Article  PubMed  CAS  Google Scholar 

  • Klawans, H. L., and Rubovits, R., 1974b, An experimental model of tardive dyskinesia, J. Neural Transm. 33: 235–246.

    Article  Google Scholar 

  • LeDouarin, C., Fage, D., and Scatton, B., 1984, Effects of cyclo(Leu-Gly) on neurochemical indices of dopaminergic supersensitivity induced by prolonged haloperidol treatment, Life Sci. 34: 393–399.

    Article  CAS  Google Scholar 

  • List, S. J., and Seeman, P., 1979, Dopamine agonists reverse the elevated 3H-neuroleptic binding in neuroleptic-pretreated rats, Life. Sci. 24: 1447–1452.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Matthysse, S., 1973, Antipsychotic drug actions: A cue to the neuropathology of schizophenia?, Fed. Proc. 32: 200–204.

    PubMed  CAS  Google Scholar 

  • Muller, P., and Seeman, P., 1977, Brain neurotransmitter receptors after long term haloperidol: dopamine, acetylcholine, serotonin, alpha-noradrenergic and naloxone receptors, Life Sci. 21: 1751–1758.

    Article  PubMed  CAS  Google Scholar 

  • Nair, R. M. G., Kastin, A. J., and Schally, A. V., 1971, Isolation and structure of hypothalamic MSH release-inhibiting hormone, Biochem. Biophys. Res. Commun. 43: 1376–1381.

    Article  PubMed  CAS  Google Scholar 

  • Owen, F., Cross, A. J. Waddinton, J. L., Poulter, M., Gamble, S. J., and Crow, T. J., 1980, Dopamine mediated behavior and 3H-spiroperone binding to striatal membranes in rats after nine months haloperidol administration, Life Sci. 26: 55–59.

    Article  PubMed  CAS  Google Scholar 

  • Plotnikoff, N. P., Kastin, A. J., Anderson, M. S., and Schally, A. V., 1971, Dopa potentiation by a hypothalamic factor, MSH release-inhibiting hormone (MIF), Life Sci. 10: 1279–1283.

    Article  CAS  Google Scholar 

  • Rainbow, T. C., Flexner, J. B. Flexner, L. B., Hoffman, P. L., and Walter R., 1979, Distribution survival and biological effects in mice of a behaviorally active enzymatically stable peptides, pharmacokinetics of cyclo(Leu-Gly) and puromycine induced amnesia, Pharmacol. Biochem. Behay. 10: 787–793.

    Article  CAS  Google Scholar 

  • Redding, T. W., Kastin, A. J., Nair, R. M. G., and Schally, A. V., 1973, Distribution, half-life and excretion of 14C- and 3H-labeled L-prolyl-L-leucyl-glycinamide in the rat, Neuroendocrinology 11: 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Ritzmann, R. F., and Bhargava, H. N., 1980, The effect of cyclo(Leu-Gly) on chemical denervation supersensitivity of dopamine receptors-induced by intracerebroventricular injection of 6-hydorxydopamine in mice, Life Sci. 27: 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt, J. E., Shore, D., Neckers, L. M., Perlow, M. J., Freed, W. J., and Wyatt, R. J., 1979, Effects of chronic haloperidol on caudate 3H-spiroperidol binding in lesioned rats, Eur. J. Pharmacol. 60: 387–388.

    Article  PubMed  CAS  Google Scholar 

  • Sayers, A. C., Burki, H. R., Ruch, W., and Asper, H., 1975, Neuroleptic induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine, Psychopharmacologia 41: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., 1977, Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration, Eur. J. Pharmacol. 46: 363–369.

    Article  PubMed  CAS  Google Scholar 

  • Schelkunov, E. L., 1967, Adrenergic effect of chronic administration of neuroleptics, Nature (London) 214: 1210–1213.

    Article  CAS  Google Scholar 

  • Schmidt, W. R., and Jarcho, L. W., 1966, Persistent dyskinesias following phenothiazine therapy, Arch. Neurol. (Chicago) 14: 369–377.

    Article  CAS  Google Scholar 

  • Seeman, P., and Lee, T., 1975, Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons, Science 188: 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays, Proc. Natl. Acad. Sci. USA 72: 4376–4380.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. C., Narsimhachari, N., and Davis, J. M., 1978, Increased effect of apomorphine on homovanillic acid in rats terminated from chronic haloperidol, J. Neural Transm. 42: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S. H., Banerjee, S. P., Yamamura, H. I., and Greenberg, D., 1974, Drugs, neurotransmitters and schizophrenia, Science 184: 1243–1253.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, M., and Wilk, S., 1980, Acute and chronic effects of haloperidol and clozapine on dopamine metabolism in two dopamine rich areas of the rat brain, Res. Commun. Psycho!. Psychiat. Behay. 5: 37–47.

    CAS  Google Scholar 

  • Stawarz, R. J., Robinson, S., Sulser, F., and Dingell, J. V., 1974, On the significance of the increase of homovanilic acid (HVA) caused by antipsychotics in the corpus striatum and limbic forebrain, Fed. Proc. 33: 246.

    Google Scholar 

  • Stille, G., Lauener, H., and Eichenberger, E., 1971, The pharmacology of 8-chloro-1 l-(4-methyll-piperazinyl)-5-H-dibenzo (b,e) (1,4) diazepine (Clozapine), Il Farmaco 26: 603–625.

    CAS  Google Scholar 

  • Tarsy, D., and Baldessarini, R. J., 1973, Pharmacologically induced behavioral supersensitivity to apomorphine, Nature New Biol. 245: 262–263.

    PubMed  CAS  Google Scholar 

  • Van Rossum, J. M., 1966, The significance of dopamine receptor blockade for the mechanism of neuroleptic drugs, Arch. Int. Pharmacodyn. Ther. 160: 492–494.

    PubMed  Google Scholar 

  • Wurtman, R. J., Hirsch, M. J., and Growdon, J. H., 1977, Lecithin consumption elevates serum free choline levels, Lancet 2: 68–69.

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough, G. C., 1975, Supersensitivity of caudate neurons after repeated administration of haloperidol, Eur. J. Pharmacol. 31: 367–369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Bhargava, H.N. (1986). Brain Peptides, Neuroleptic-Induced Tolerance, and Dopamine Receptor Supersensitivity. In: Shah, N.S., Donald, A.G. (eds) Movement Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5038-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5038-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5040-8

  • Online ISBN: 978-1-4684-5038-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics